-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #35 from Vayun-Goel/linear_regression_2d
Linear regression 2d
- Loading branch information
Showing
1 changed file
with
62 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
import math | ||
import numpy as np | ||
|
||
class LinearRegression2D(): | ||
|
||
def __init__(self,points,per_graph_epochs): | ||
self.points=points | ||
self.per_graph_epochs = per_graph_epochs | ||
|
||
def dot_product(self,x,w,b): | ||
z = 0.0 | ||
z = z + float(x[0])*float(w[0]) | ||
z = z + float(x[1])*float(w[1]) | ||
z = z + float(b) | ||
return float(z) | ||
|
||
def loss_function(self,w,b): | ||
mse = 0.0 | ||
for i in range(len(self.points)): | ||
z = self.dot_product(self.points[i],w,b) | ||
mse = mse + math.pow((self.points[i][0]-z),2) | ||
mse = (mse / float(len(self.points))) | ||
return mse | ||
|
||
def grad_descent(self,epochs,w,b): | ||
for i in range(epochs): | ||
del_w = [0.0 , 0.0] | ||
del_b = 0.0 | ||
m = len(self.points) | ||
for j in range(m): | ||
h = self.dot_product(self.points[j],w,b) | ||
del_w[0] = del_w[0] + (float(self.points[j][0])*(float(h) - float(self.points[j][2]))) | ||
del_w[1] = del_w[1] + (float(self.points[j][1])*(float(h) - float(self.points[j][2]))) | ||
del_b = del_b + (float(h) - float(self.points[j][2])) | ||
del_w[0] = del_w[0] / float(m) | ||
del_w[1] = del_w[1] / float(m) | ||
del_b = del_b / float(m) | ||
print(del_w) | ||
print(del_b) | ||
w[0] = w[0] - 0.005*float(del_w[0]) | ||
w[1] = w[1] - 0.005*float(del_w[1]) | ||
b = b - 0.05*float(del_b) | ||
return w, b | ||
|
||
def visualizer(self): | ||
w = [np.random.randn() for i in range(len(self.points[0])-1)] | ||
b = np.random.randn() | ||
# print(w,b) | ||
arr = [[0 for i in range(len(w)+1)] for j in range(7)] | ||
for i in range(len(w)): | ||
arr[0][i] = w[i] | ||
arr[0][2] = b | ||
for i in range(5): | ||
w,b = self.grad_descent(int(self.per_graph_epochs),w,float(b)) | ||
arr[i+1][0] = w[0] | ||
arr[i+1][1] = w[1] | ||
arr[i+1][2] = b | ||
w,b = self.grad_descent(2000,w,b) | ||
arr[6][0] = w[0] | ||
arr[6][1] = w[1] | ||
arr[6][2] = b | ||
return arr |