-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan_vgg19_non_pooling_upsampling.py
377 lines (275 loc) · 15.4 KB
/
dcgan_vgg19_non_pooling_upsampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from __future__ import print_function, division
from keras.applications.vgg19 import VGG19
import keras.backend as K
from keras.layers import Activation, add, BatchNormalization, Conv2D, Conv2DTranspose, Dense, Dropout, Flatten, Input, MaxPooling2D, Reshape, UpSampling2D, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU, PReLU
from keras.models import Model, Sequential
from keras.optimizers import Adam, Nadam
import math
import matplotlib.pyplot as plt
import numpy as np
import os
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
import sys
from tqdm import tqdm
time = 65
# Load data
X_train = np.load('D:/Bitcamp/Project/Frontalization/Imagenius/Numpy/korean_lux_x.npy') # Side face
Y_train = np.load('D:/Bitcamp/Project/Frontalization/Imagenius/Numpy/korean_lux_y.npy') # Front face
# print(X_train.shape)
# print(Y_train.shape)
# print(X_test.shape)
# print(Y_test.shape)
# Shuffle
# X_train, Y_train = shuffle(X_train, Y_train, random_state = 66)
# X_test, Y_test = shuffle(X_test, Y_test, random_state = 66)
train_epochs = 10000
test_epochs = 1
train_batch_size = 32
test_batch_size = 32
train_save_interval = 1
test_save_interval = 1
class DCGAN():
def __init__(self):
# Rescale -1 to 1
self.X_train = X_train / 127.5 - 1.
self.Y_train = Y_train / 127.5 - 1.
# X_test = X_test / 127.5 - 1.
# Y_test = Y_test / 127.5 - 1.
# Prameters
self.height = self.X_train.shape[1]
self.width = self.X_train.shape[2]
self.channels = self.X_train.shape[3]
self.latent_dimension = self.width
self.optimizer = Adam(lr = 0.0002, beta_1 = 0.5)
self.n_show_image = 1 # Number of images to show
self.history = []
self.number = 0
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss = 'binary_crossentropy', optimizer = self.optimizer, metrics = ['accuracy'])
# Build and compile the generator
self.generator = self.build_generator()
self.generator.compile(loss = self.vgg19_loss, optimizer = self.optimizer)
# The generator takes noise as input and generates imgs
z = Input(shape = (self.height, self.width, self.channels))
image = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
valid = self.discriminator(image)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, [image, valid])
self.combined.compile(loss = [self.vgg19_loss, 'binary_crossentropy'], loss_weights=[1., 1e-3], optimizer = self.optimizer)
# self.combined.summary()
def discriminator_block(self, model, filters, kernel_size, strides):
layer = Conv2D(filters = filters, kernel_size = kernel_size, strides = strides, padding = 'same')(model)
layer = BatchNormalization(momentum = 0.5)(layer)
layer = LeakyReLU(alpha = 0.2)(layer)
return layer
def residual_block(self, model, filters, kernel_size, strides):
generator = model
layer = Conv2D(filters = filters, kernel_size = kernel_size, strides = strides, padding = 'same')(generator)
layer = BatchNormalization(momentum = 0.5)(layer)
# Using Parametric ReLU
layer = PReLU(alpha_initializer = 'zeros', alpha_regularizer = None, alpha_constraint = None, shared_axes = [1, 2])(layer)
layer = Conv2D(filters = filters, kernel_size = kernel_size, strides=strides, padding = 'same')(layer)
output = BatchNormalization(momentum = 0.5)(layer)
model = add([generator, output])
return model
def up_sampling_block(self, model, filters, kernel_size, strides):
# In place of Conv2D and UpSampling2D we can also use Conv2DTranspose (Both are used for Deconvolution)
# Even we can have our own function for deconvolution (i.e one made in Utils.py)
# layer = Conv2DTranspose(filters = filters, kernel_size = kernal_size, strides = strides, padding = 'same)(layer)
layer = Conv2D(filters = filters, kernel_size = kernel_size, strides = strides, padding = 'same')(model)
layer = UpSampling2D(size = (2, 2))(layer)
layer = LeakyReLU(alpha = 0.2)(layer)
return layer
# computes VGG loss or content loss
def vgg19_loss(self, true, prediction):
vgg19 = VGG19(include_top = False, weights = 'imagenet', input_shape = (self.height, self.width, self.channels))
# Make trainable as False
vgg19.trainable = False
for layer in vgg19.layers:
layer.trainable = False
model = Model(inputs = vgg19.input, outputs = vgg19.get_layer('block5_conv4').output)
model.trainable = False
return K.mean(K.square(model(true) - model(prediction)))
def build_generator(self):
input = Input(shape = (self.height, self.width, self.channels))
layer = Conv2D(filters = 16, kernel_size = (2, 2), strides = (2, 2), padding = 'valid')(input)
layer = PReLU(alpha_initializer = 'zeros', alpha_regularizer = None, alpha_constraint = None, shared_axes = [1, 2])(layer)
layer = Conv2D(filters = 32, kernel_size = (2, 2), strides = (2, 2), padding = 'valid')(layer)
layer = PReLU(alpha_initializer = 'zeros', alpha_regularizer = None, alpha_constraint = None, shared_axes = [1, 2])(layer)
layer = Conv2D(filters = 64, kernel_size = (2, 2), strides = (2, 2), padding = 'valid')(layer)
layer = PReLU(alpha_initializer = 'zeros', alpha_regularizer = None, alpha_constraint = None, shared_axes = [1, 2])(layer)
previous_output = layer
# Using 16 Residual Blocks
for i in range(16):
layer = self.residual_block(model = layer, filters = 64, kernel_size = (3, 3), strides = (1, 1))
layer = Conv2D(filters = 64, kernel_size = (3, 3), strides = (1, 1), padding = 'same')(layer)
layer = BatchNormalization(momentum = 0.5)(layer)
layer = add([previous_output, layer])
# Using 2 UpSampling Blocks
for j in range(3):
layer = self.up_sampling_block(model = layer, filters = 256, kernel_size = 3, strides = 1)
layer = Conv2D(filters = self.channels, kernel_size = (9, 9), strides = (1, 1), padding = 'same')(layer)
output = Activation('tanh')(layer)
generator_model = Model(inputs = input, outputs = output)
# generator_model.summary()
return generator_model
def build_discriminator(self):
model = Sequential()
model.add(Conv2D(32, kernel_size = (3, 3), strides = (2, 2), input_shape = (self.height, self.width, self.channels), padding = 'same'))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size = (3, 3), strides = (2, 2), padding = 'same'))
model.add(ZeroPadding2D(padding = ((0, 1), (0, 1))))
model.add(BatchNormalization(momentum = 0.8))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size = (3, 3), strides = (2, 2), padding = 'same'))
model.add(BatchNormalization(momentum = 0.8))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size = (3, 3), strides = (2, 2), padding = 'same'))
model.add(BatchNormalization(momentum = 0.8))
model.add(LeakyReLU(alpha = 0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation = 'sigmoid'))
# model.summary()
image = Input(shape = (self.height, self.width, self.channels))
validity = model(image)
return Model(image, validity)
def train(self, epochs, batch_size, save_interval):
# Adversarial ground truths
fake = np.zeros((batch_size, 1))
real = np.ones((batch_size, 1))
print('Training')
for k in range(epochs):
for l in tqdm(range(batch_size)):
# Select a random half of images
index = np.random.randint(0, self.X_train.shape[0], batch_size)
front_image = self.Y_train[index]
# Generate a batch of new images
side_image = self.X_train[index]
# optimizer.zero_grad()
generated_image = self.generator.predict(side_image)
self.discriminator.trainable = True
# Train the discriminator (real classified as ones and generated as zeros)
discriminator_fake_loss = self.discriminator.train_on_batch(generated_image, fake)
discriminator_real_loss = self.discriminator.train_on_batch(front_image, real)
discriminator_loss = 0.5 * np.add(discriminator_fake_loss, discriminator_real_loss)
self.discriminator.trainable = False
# Train the generator (wants discriminator to mistake images as real)
generator_loss = self.combined.train_on_batch(side_image, [front_image, real])
# Plot the progress
print ('\nTraining epoch : %d \nTraining batch : %d \nAccuracy of discriminator : %.2f%% \nLoss of discriminator : %f \nLoss of generator : %f '
% (k + 1, l + 1, discriminator_loss[1] * 100, discriminator_loss[0], generator_loss[2]))
record = (k + 1, l + 1, discriminator_loss[1] * 100, discriminator_loss[0], generator_loss[2])
self.history.append(record)
# If at save interval -> save generated image samples
if l % save_interval == 0:
save_path = 'D:/Generated Image/Training' + str(time) + '/'
self.save_image(image_index = l, front_image = front_image, side_image = side_image, save_path = save_path)
self.history = np.array(self.history)
self.graph(history = history, save_path = save_path)
def test(self, epochs, batch_size, save_interval):
global history
# Adversarial ground truths
fake = np.zeros((batch_size, 1))
real = np.ones((batch_size, 1))
print('Testing')
for m in range(epochs):
for n in tqdm(range(batch_size)):
# Select a random half of images
index = np.random.randint(0, X_test.shape[0], batch_size)
front_image = Y_test[index]
# Generate a batch of new images
side_image = X_test[index]
generated_image = self.generator.predict(side_image)
# Train the discriminator (real classified as ones and generated as zeros)
discriminator_fake_loss = self.discriminator.test_on_batch(generated_image, fake)
discriminator_real_loss = self.discriminator.test_on_batch(front_image, real)
discriminator_loss = 0.5 * np.add(discriminator_fake_loss, discriminator_real_loss)
# Train the generator (wants discriminator to mistake images as real)
generator_loss = self.combined.test_on_batch(side_image, [front_image, real])
# Plot the progress
print ('\nTest epoch : %d \nTest batch : %d \nAccuracy of discriminator : %.2f%% \nLoss of discriminator : %f \nLoss of generator : %f '
% (m + 1, n + 1, discriminator_loss[1] * 100, discriminator_loss[0], generator_loss[2]))
record = (m + 1, n + 1, discriminator_loss[1] * 100, discriminator_loss[0], generator_loss[2])
history.append(record)
# If at save interval -> save generated image samples
if n % save_interval == 0:
save_path = 'D:/Generated Image/Testing' + str(time) + '/'
self.save_image(image_index = n, front_image = front_image, side_image = side_image, save_path = save_path)
history = np.array(history)
self.history(history = history, save_path = save_path)
def save_image(self, image_index, front_image, side_image, save_path):
# Rescale images 0 - 1
generated_image = 0.5 * self.generator.predict(side_image) + 0.5
front_image = (127.5 * (front_image + 1)).astype(np.uint8)
side_image = (127.5 * (side_image + 1)).astype(np.uint8)
plt.figure(figsize = (8, 2))
# Adjust the interval of the image
plt.subplots_adjust(wspace = 0.6)
# Show image (first column : original side image, second column : original front image, third column = generated image(front image))
for m in range(self.n_show_image):
generated_image_plot = plt.subplot(1, 3, m + 1 + (2 * self.n_show_image))
generated_image_plot.set_title('Generated image (front image)')
if self.channels == 1:
plt.imshow(generated_image[image_index, : , : , 0], cmap = 'gray')
else:
plt.imshow(generated_image[image_index, : , : , : ])
original_front_face_image_plot = plt.subplot(1, 3, m + 1 + self.n_show_image)
original_front_face_image_plot.set_title('Origninal front image')
if self.channels == 1:
plt.imshow(front_image[image_index].reshape(self.height, self.width), cmap = 'gray')
else:
plt.imshow(front_image[image_index])
original_side_face_image_plot = plt.subplot(1, 3, m + 1)
original_side_face_image_plot.set_title('Origninal side image')
if self.channels == 1:
plt.imshow(side_image[image_index].reshape(self.height, self.width), cmap = 'gray')
else:
plt.imshow(side_image[image_index])
# Don't show axis of x and y
generated_image_plot.axis('off')
original_front_face_image_plot.axis('off')
original_side_face_image_plot.axis('off')
self.number += 1
# plt.show()
save_path = save_path
# Check folder presence
if not os.path.isdir(save_path):
os.makedirs(save_path)
save_name = '%d.png' % self.number
save_name = os.path.join(save_path, save_name)
plt.savefig(save_name)
plt.close()
def graph(self, history, save_path):
plt.plot(self.history[:, 2])
plt.plot(self.history[:, 3])
plt.plot(self.history[:, 4])
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Generative adversarial network')
plt.legend(['Accuracy of discriminator', 'Loss of discriminator', 'Loss of generator'], loc = 'upper left')
figure = plt.gcf()
# plt.show()
save_path = save_path
# Check folder presence
if not os.path.isdir(save_path):
os.makedirs(save_path)
# save_name = '%d.png' % number
save_name = 'History.png'
save_name = os.path.join(save_path, save_name)
figure.savefig(save_name)
plt.close()
if __name__ == '__main__':
dcgan = DCGAN()
dcgan.train(epochs = train_epochs, batch_size = train_batch_size, save_interval = train_save_interval)
# dcgan.test(epochs = test_epochs, batch_size = test_batch_size, save_interval = test_save_interval)