-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcycle_gan.py
923 lines (777 loc) · 39.3 KB
/
cycle_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
from keras.layers import Layer, Input, Conv2D, Activation, add, BatchNormalization, UpSampling2D, ZeroPadding2D, Conv2DTranspose, Flatten, MaxPooling2D, AveragePooling2D
# from keras_contrib.layers.normalization import InstanceNormalization, InputSpec
from keras.layers import InputSpec
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.core import Dense
from keras.optimizers import Adam
from keras.backend import mean
from keras.models import Model, model_from_json
from keras.utils import plot_model
from keras.engine.topology import Network
from collections import OrderedDict
# from scipy.misc import imsave, toimage # has depricated
import numpy as np
import random
import datetime
import time
import json
import math
import csv
import sys
import os
import keras.backend as K
import tensorflow as tf
# sys.path.append('../')
# import load_data
np.random.seed(seed=12345)
class CycleGAN():
def __init__(self, lr_D=2e-4, lr_G=2e-4, image_shape=(256*1, 256*1, 1),
date_time_string_addition='_test', image_folder=''):
self.img_shape = image_shape
self.channels = self.img_shape[-1]
self.normalization = InstanceNormalization
# Hyper parameters
self.lambda_1 = 10.0 # Cyclic loss weight A_2_B
self.lambda_2 = 10.0 # Cyclic loss weight B_2_A
self.lambda_D = 1.0 # Weight for loss from discriminator guess on synthetic images
self.learning_rate_D = lr_D
self.learning_rate_G = lr_G
self.generator_iterations = 1 # Number of generator training iterations in each training loop
self.discriminator_iterations = 1 # Number of generator training iterations in each training loop
self.beta_1 = 0.5
self.beta_2 = 0.999
self.batch_size = 1
self.epochs = 200 # choose multiples of 25 since the models are save each 25th epoch
self.save_interval = 1
self.synthetic_pool_size = 50
# Linear decay of learning rate, for both discriminators and generators
self.use_linear_decay = False
self.decay_epoch = 101 # The epoch where the linear decay of the learning rates start
# Identity loss - sometimes send images from B to G_A2B (and the opposite) to teach identity mappings
self.use_identity_learning = False
self.identity_mapping_modulus = 10 # Identity mapping will be done each time the iteration number is divisable with this number
# PatchGAN - if false the discriminator learning rate should be decreased
self.use_patchgan = True
# Multi scale discriminator - if True the generator have an extra encoding/decoding step to match discriminator information access
self.use_multiscale_discriminator = False
# Resize convolution - instead of transpose convolution in deconvolution layers (uk) - can reduce checkerboard artifacts but the blurring might affect the cycle-consistency
self.use_resize_convolution = False
# Supervised learning part - for MR images - comparison
self.use_supervised_learning = False
self.supervised_weight = 10.0
# Fetch data during training instead of pre caching all images - might be necessary for large datasets
self.use_data_generator = False
# Tweaks
self.REAL_LABEL = 1.0 # Use e.g. 0.9 to avoid training the discriminators to zero loss
# Used as storage folder name
self.date_time = time.strftime('%Y%m%d-%H%M%S', time.localtime()) + date_time_string_addition
# optimizer
self.opt_D = Adam(self.learning_rate_D, self.beta_1, self.beta_2)
self.opt_G = Adam(self.learning_rate_G, self.beta_1, self.beta_2)
# ======= Discriminator model ==========
if self.use_multiscale_discriminator:
D_A = self.modelMultiScaleDiscriminator()
D_B = self.modelMultiScaleDiscriminator()
loss_weights_D = [0.5, 0.5] # 0.5 since we train on real and synthetic images
else:
D_A = self.modelDiscriminator()
D_B = self.modelDiscriminator()
loss_weights_D = [0.5] # 0.5 since we train on real and synthetic images
# D_A.summary()
# Discriminator builds
image_A = Input(shape=self.img_shape)
image_B = Input(shape=self.img_shape)
guess_A = D_A(image_A)
guess_B = D_B(image_B)
self.D_A = Model(inputs=image_A, outputs=guess_A, name='D_A_model')
self.D_B = Model(inputs=image_B, outputs=guess_B, name='D_B_model')
# self.D_A.summary()
# self.D_B.summary()
self.D_A.compile(optimizer=self.opt_D,
loss=self.lse,
loss_weights=loss_weights_D)
self.D_B.compile(optimizer=self.opt_D,
loss=self.lse,
loss_weights=loss_weights_D)
# Use Networks to avoid falsy keras error about weight descripancies
self.D_A_static = Network(inputs=image_A, outputs=guess_A, name='D_A_static_model')
self.D_B_static = Network(inputs=image_B, outputs=guess_B, name='D_B_static_model')
# ======= Generator model ==========
# Do note update discriminator weights during generator training
self.D_A_static.trainable = False
self.D_B_static.trainable = False
# Generators
self.G_A2B = self.modelGenerator(name='G_A2B_model')
self.G_B2A = self.modelGenerator(name='G_B2A_model')
# self.G_A2B.summary()
if self.use_identity_learning:
self.G_A2B.compile(optimizer=self.opt_G, loss='MAE')
self.G_B2A.compile(optimizer=self.opt_G, loss='MAE')
# Generator builds
real_A = Input(shape=self.img_shape, name='real_A')
real_B = Input(shape=self.img_shape, name='real_B')
synthetic_B = self.G_A2B(real_A)
synthetic_A = self.G_B2A(real_B)
dA_guess_synthetic = self.D_A_static(synthetic_A)
dB_guess_synthetic = self.D_B_static(synthetic_B)
reconstructed_A = self.G_B2A(synthetic_B)
reconstructed_B = self.G_A2B(synthetic_A)
model_outputs = [reconstructed_A, reconstructed_B]
compile_losses = [self.cycle_loss, self.cycle_loss,
self.lse, self.lse]
compile_weights = [self.lambda_1, self.lambda_2,
self.lambda_D, self.lambda_D]
if self.use_multiscale_discriminator:
for _ in range(2):
compile_losses.append(self.lse)
compile_weights.append(self.lambda_D) # * 1e-3) # Lower weight to regularize the model
for i in range(2):
model_outputs.append(dA_guess_synthetic[i])
model_outputs.append(dB_guess_synthetic[i])
else:
model_outputs.append(dA_guess_synthetic)
model_outputs.append(dB_guess_synthetic)
if self.use_supervised_learning:
model_outputs.append(synthetic_A)
model_outputs.append(synthetic_B)
compile_losses.append('MAE')
compile_losses.append('MAE')
compile_weights.append(self.supervised_weight)
compile_weights.append(self.supervised_weight)
self.G_model = Model(inputs=[real_A, real_B],
outputs=model_outputs,
name='G_model')
self.G_model.compile(optimizer=self.opt_G,
loss=compile_losses,
loss_weights=compile_weights)
# self.G_A2B.summary()
# ======= Data ==========
# Use 'None' to fetch all available images
nr_A_train_imgs = None
nr_B_train_imgs = None
nr_A_test_imgs = None
nr_B_test_imgs = None
if self.use_data_generator:
print('--- Using dataloader during training ---')
else:
print('--- Caching data ---')
sys.stdout.flush()
if self.use_data_generator:
self.data_generator = load_data.load_data(
nr_of_channels=self.channels, batch_size=self.batch_size, generator=True, subfolder=image_folder)
# Only store test images
nr_A_train_imgs = 0
nr_B_train_imgs = 0
data = load_data.load_data(nr_of_channels=self.channels,
batch_size=self.batch_size,
nr_A_train_imgs=nr_A_train_imgs,
nr_B_train_imgs=nr_B_train_imgs,
nr_A_test_imgs=nr_A_test_imgs,
nr_B_test_imgs=nr_B_test_imgs,
subfolder=image_folder)
self.A_train = data["trainA_images"]
self.B_train = data["trainB_images"]
self.A_test = data["testA_images"]
self.B_test = data["testB_images"]
self.testA_image_names = data["testA_image_names"]
self.testB_image_names = data["testB_image_names"]
if not self.use_data_generator:
print('Data has been loaded')
# ======= Create designated run folder and store meta data ==========
directory = os.path.join('images', self.date_time)
if not os.path.exists(directory):
os.makedirs(directory)
self.writeMetaDataToJSON()
# ======= Avoid pre-allocating GPU memory ==========
# TensorFlow wizardry
config = tf.ConfigProto()
# Don't pre-allocate memory; allocate as-needed
config.gpu_options.allow_growth = True
# Create a session with the above options specified.
K.tensorflow_backend.set_session(tf.Session(config=config))
# ===== Tests ======
# Simple Model
# self.G_A2B = self.modelSimple('simple_T1_2_T2_model')
# self.G_B2A = self.modelSimple('simple_T2_2_T1_model')
# self.G_A2B.compile(optimizer=Adam(), loss='MAE')
# self.G_B2A.compile(optimizer=Adam(), loss='MAE')
# # self.trainSimpleModel()
# self.load_model_and_generate_synthetic_images()
# ======= Initialize training ==========
sys.stdout.flush()
#plot_model(self.G_A2B, to_file='GA2B_expanded_model_new.png', show_shapes=True)
self.train(epochs=self.epochs, batch_size=self.batch_size, save_interval=self.save_interval)
#self.load_model_and_generate_synthetic_images()
#===============================================================================
# Architecture functions
def ck(self, x, k, use_normalization):
x = Conv2D(filters=k, kernel_size=4, strides=2, padding='same')(x)
# Normalization is not done on the first discriminator layer
if use_normalization:
x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
x = LeakyReLU(alpha=0.2)(x)
return x
def c7Ak(self, x, k):
x = Conv2D(filters=k, kernel_size=7, strides=1, padding='valid')(x)
x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
x = Activation('relu')(x)
return x
def dk(self, x, k):
x = Conv2D(filters=k, kernel_size=3, strides=2, padding='same')(x)
x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
x = Activation('relu')(x)
return x
def Rk(self, x0):
k = int(x0.shape[-1])
# first layer
x = ReflectionPadding2D((1,1))(x0)
x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid')(x)
x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
x = Activation('relu')(x)
# second layer
x = ReflectionPadding2D((1, 1))(x)
x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid')(x)
x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
# merge
x = add([x, x0])
return x
def uk(self, x, k):
# (up sampling followed by 1x1 convolution <=> fractional-strided 1/2)
if self.use_resize_convolution:
x = UpSampling2D(size=(2, 2))(x) # Nearest neighbor upsampling
x = ReflectionPadding2D((1, 1))(x)
x = Conv2D(filters=k, kernel_size=3, strides=1, padding='valid')(x)
else:
x = Conv2DTranspose(filters=k, kernel_size=3, strides=2, padding='same')(x) # this matches fractinoally stided with stride 1/2
x = self.normalization(axis=3, center=True, epsilon=1e-5)(x, training=True)
x = Activation('relu')(x)
return x
#===============================================================================
# Models
def modelMultiScaleDiscriminator(self, name=None):
x1 = Input(shape=self.img_shape)
x2 = AveragePooling2D(pool_size=(2, 2))(x1)
#x4 = AveragePooling2D(pool_size=(2, 2))(x2)
out_x1 = self.modelDiscriminator('D1')(x1)
out_x2 = self.modelDiscriminator('D2')(x2)
#out_x4 = self.modelDiscriminator('D4')(x4)
return Model(inputs=x1, outputs=[out_x1, out_x2], name=name)
def modelDiscriminator(self, name=None):
# Specify input
input_img = Input(shape=self.img_shape)
# Layer 1 (#Instance normalization is not used for this layer)
x = self.ck(input_img, 64, False)
# Layer 2
x = self.ck(x, 128, True)
# Layer 3
x = self.ck(x, 256, True)
# Layer 4
x = self.ck(x, 512, True)
# Output layer
if self.use_patchgan:
x = Conv2D(filters=1, kernel_size=4, strides=1, padding='same')(x)
else:
x = Flatten()(x)
x = Dense(1)(x)
x = Activation('sigmoid')(x)
return Model(inputs=input_img, outputs=x, name=name)
def modelGenerator(self, name=None):
# Specify input
input_img = Input(shape=self.img_shape)
# Layer 1
x = ReflectionPadding2D((3, 3))(input_img)
x = self.c7Ak(x, 32)
# Layer 2
x = self.dk(x, 64)
# Layer 3
x = self.dk(x, 128)
if self.use_multiscale_discriminator:
# Layer 3.5
x = self.dk(x, 256)
# Layer 4-12: Residual layer
for _ in range(4, 13):
x = self.Rk(x)
if self.use_multiscale_discriminator:
# Layer 12.5
x = self.uk(x, 128)
# Layer 13
x = self.uk(x, 64)
# Layer 14
x = self.uk(x, 32)
x = ReflectionPadding2D((3, 3))(x)
x = Conv2D(self.channels, kernel_size=7, strides=1)(x)
x = Activation('tanh')(x) # They say they use Relu but really they do not
return Model(inputs=input_img, outputs=x, name=name)
#===============================================================================
# Test - simple model
def modelSimple(self, name=None):
inputImg = Input(shape=self.img_shape)
#x = Conv2D(1, kernel_size=5, strides=1, padding='same')(inputImg)
#x = Dense(self.channels)(x)
x = Conv2D(256, kernel_size=1, strides=1, padding='same')(inputImg)
x = Activation('relu')(x)
x = Conv2D(self.channels, kernel_size=1, strides=1, padding='same')(x)
return Model(input=inputImg, output=x, name=name)
def trainSimpleModel(self):
real_A = self.A_test[0]
real_B = self.B_test[0]
real_A = real_A[np.newaxis, :, :, :]
real_B = real_B[np.newaxis, :, :, :]
epochs = 200
for epoch in range(epochs):
print('Epoch {} started'.format(epoch))
self.G_A2B.fit(x=self.A_train, y=self.B_train, epochs=1, batch_size=1)
self.G_B2A.fit(x=self.B_train, y=self.A_train, epochs=1, batch_size=1)
#loss = self.G_A2B.train_on_batch(x=real_A, y=real_B)
#print('loss: ', loss)
synthetic_image_A = self.G_B2A.predict(real_B, batch_size=1)
synthetic_image_B = self.G_A2B.predict(real_A, batch_size=1)
self.save_tmp_images(real_A, real_B, synthetic_image_A, synthetic_image_B)
self.saveModel(self.G_A2B, 200)
self.saveModel(self.G_B2A, 200)
#===============================================================================
# Training
def train(self, epochs, batch_size=1, save_interval=1):
def run_training_iteration(loop_index, epoch_iterations):
# ======= Discriminator training ==========
# Generate batch of synthetic images
synthetic_images_B = self.G_A2B.predict(real_images_A)
synthetic_images_A = self.G_B2A.predict(real_images_B)
synthetic_images_A = synthetic_pool_A.query(synthetic_images_A)
synthetic_images_B = synthetic_pool_B.query(synthetic_images_B)
for _ in range(self.discriminator_iterations):
DA_loss_real = self.D_A.train_on_batch(x=real_images_A, y=ones)
DB_loss_real = self.D_B.train_on_batch(x=real_images_B, y=ones)
DA_loss_synthetic = self.D_A.train_on_batch(x=synthetic_images_A, y=zeros)
DB_loss_synthetic = self.D_B.train_on_batch(x=synthetic_images_B, y=zeros)
if self.use_multiscale_discriminator:
DA_loss = sum(DA_loss_real) + sum(DA_loss_synthetic)
DB_loss = sum(DB_loss_real) + sum(DB_loss_synthetic)
print('DA_losses: ', np.add(DA_loss_real, DA_loss_synthetic))
print('DB_losses: ', np.add(DB_loss_real, DB_loss_synthetic))
else:
DA_loss = DA_loss_real + DA_loss_synthetic
DB_loss = DB_loss_real + DB_loss_synthetic
D_loss = DA_loss + DB_loss
if self.discriminator_iterations > 1:
print('D_loss:', D_loss)
sys.stdout.flush()
# ======= Generator training ==========
target_data = [real_images_A, real_images_B] # Compare reconstructed images to real images
if self.use_multiscale_discriminator:
for i in range(2):
target_data.append(ones[i])
target_data.append(ones[i])
else:
target_data.append(ones)
target_data.append(ones)
if self.use_supervised_learning:
target_data.append(real_images_A)
target_data.append(real_images_B)
for _ in range(self.generator_iterations):
G_loss = self.G_model.train_on_batch(
x=[real_images_A, real_images_B], y=target_data)
if self.generator_iterations > 1:
print('G_loss:', G_loss)
sys.stdout.flush()
gA_d_loss_synthetic = G_loss[1]
gB_d_loss_synthetic = G_loss[2]
reconstruction_loss_A = G_loss[3]
reconstruction_loss_B = G_loss[4]
# Identity training
if self.use_identity_learning and loop_index % self.identity_mapping_modulus == 0:
G_A2B_identity_loss = self.G_A2B.train_on_batch(
x=real_images_B, y=real_images_B)
G_B2A_identity_loss = self.G_B2A.train_on_batch(
x=real_images_A, y=real_images_A)
print('G_A2B_identity_loss:', G_A2B_identity_loss)
print('G_B2A_identity_loss:', G_B2A_identity_loss)
# Update learning rates
if self.use_linear_decay and epoch > self.decay_epoch:
self.update_lr(self.D_A, decay_D)
self.update_lr(self.D_B, decay_D)
self.update_lr(self.G_model, decay_G)
# Store training data
DA_losses.append(DA_loss)
DB_losses.append(DB_loss)
gA_d_losses_synthetic.append(gA_d_loss_synthetic)
gB_d_losses_synthetic.append(gB_d_loss_synthetic)
gA_losses_reconstructed.append(reconstruction_loss_A)
gB_losses_reconstructed.append(reconstruction_loss_B)
GA_loss = gA_d_loss_synthetic + reconstruction_loss_A
GB_loss = gB_d_loss_synthetic + reconstruction_loss_B
D_losses.append(D_loss)
GA_losses.append(GA_loss)
GB_losses.append(GB_loss)
G_losses.append(G_loss)
reconstruction_loss = reconstruction_loss_A + reconstruction_loss_B
reconstruction_losses.append(reconstruction_loss)
print('\n')
print('Epoch----------------', epoch, '/', epochs)
print('Loop index----------------', loop_index + 1, '/', epoch_iterations)
print('D_loss: ', D_loss)
print('G_loss: ', G_loss[0])
print('reconstruction_loss: ', reconstruction_loss)
print('dA_loss:', DA_loss)
print('DB_loss:', DB_loss)
if loop_index % 20 == 0:
# Save temporary images continously
self.save_tmp_images(real_images_A, real_images_B, synthetic_images_A, synthetic_images_B)
self.print_ETA(start_time, epoch, epoch_iterations, loop_index)
# ======================================================================
# Begin training
# ======================================================================
training_history = OrderedDict()
DA_losses = []
DB_losses = []
gA_d_losses_synthetic = []
gB_d_losses_synthetic = []
gA_losses_reconstructed = []
gB_losses_reconstructed = []
GA_losses = []
GB_losses = []
reconstruction_losses = []
D_losses = []
G_losses = []
# Image pools used to update the discriminators
synthetic_pool_A = ImagePool(self.synthetic_pool_size)
synthetic_pool_B = ImagePool(self.synthetic_pool_size)
# self.saveImages('(init)')
# labels
if self.use_multiscale_discriminator:
label_shape1 = (batch_size,) + self.D_A.output_shape[0][1:]
label_shape2 = (batch_size,) + self.D_A.output_shape[1][1:]
#label_shape4 = (batch_size,) + self.D_A.output_shape[2][1:]
ones1 = np.ones(shape=label_shape1) * self.REAL_LABEL
ones2 = np.ones(shape=label_shape2) * self.REAL_LABEL
#ones4 = np.ones(shape=label_shape4) * self.REAL_LABEL
ones = [ones1, ones2] # , ones4]
zeros1 = ones1 * 0
zeros2 = ones2 * 0
#zeros4 = ones4 * 0
zeros = [zeros1, zeros2] # , zeros4]
else:
label_shape = (batch_size,) + self.D_A.output_shape[1:]
ones = np.ones(shape=label_shape) * self.REAL_LABEL
zeros = ones * 0
# Linear decay
if self.use_linear_decay:
decay_D, decay_G = self.get_lr_linear_decay_rate()
# Start stopwatch for ETAs
start_time = time.time()
for epoch in range(1, epochs + 1):
if self.use_data_generator:
loop_index = 1
for images in self.data_generator:
real_images_A = images[0]
real_images_B = images[1]
if len(real_images_A.shape) == 3:
real_images_A = real_images_A[:, :, :, np.newaxis]
real_images_B = real_images_B[:, :, :, np.newaxis]
# Run all training steps
run_training_iteration(loop_index, self.data_generator.__len__())
# Store models
if loop_index % 20000 == 0:
self.saveModel(self.D_A, loop_index)
self.saveModel(self.D_B, loop_index)
self.saveModel(self.G_A2B, loop_index)
self.saveModel(self.G_B2A, loop_index)
# Break if loop has ended
if loop_index >= self.data_generator.__len__():
break
loop_index += 1
else: # Train with all data in cache
A_train = self.A_train
B_train = self.B_train
random_order_A = np.random.randint(len(A_train), size=len(A_train))
random_order_B = np.random.randint(len(B_train), size=len(B_train))
epoch_iterations = max(len(random_order_A), len(random_order_B))
min_nr_imgs = min(len(random_order_A), len(random_order_B))
# If we want supervised learning the same images form
# the two domains are needed during each training iteration
if self.use_supervised_learning:
random_order_B = random_order_A
for loop_index in range(0, epoch_iterations, batch_size):
if loop_index + batch_size >= min_nr_imgs:
# If all images soon are used for one domain,
# randomly pick from this domain
if len(A_train) <= len(B_train):
indexes_A = np.random.randint(len(A_train), size=batch_size)
indexes_B = random_order_B[loop_index:
loop_index + batch_size]
else:
indexes_B = np.random.randint(len(B_train), size=batch_size)
indexes_A = random_order_A[loop_index:
loop_index + batch_size]
else:
indexes_A = random_order_A[loop_index:
loop_index + batch_size]
indexes_B = random_order_B[loop_index:
loop_index + batch_size]
sys.stdout.flush()
real_images_A = A_train[indexes_A]
real_images_B = B_train[indexes_B]
# Run all training steps
run_training_iteration(loop_index, epoch_iterations)
#================== within epoch loop end ==========================
if epoch % save_interval == 0:
print('\n', '\n', '-------------------------Saving images for epoch', epoch, '-------------------------', '\n', '\n')
self.saveImages(epoch, real_images_A, real_images_B)
if epoch % 20 == 0:
# self.saveModel(self.G_model)
self.saveModel(self.D_A, epoch)
self.saveModel(self.D_B, epoch)
self.saveModel(self.G_A2B, epoch)
self.saveModel(self.G_B2A, epoch)
training_history = {
'DA_losses': DA_losses,
'DB_losses': DB_losses,
'gA_d_losses_synthetic': gA_d_losses_synthetic,
'gB_d_losses_synthetic': gB_d_losses_synthetic,
'gA_losses_reconstructed': gA_losses_reconstructed,
'gB_losses_reconstructed': gB_losses_reconstructed,
'D_losses': D_losses,
'G_losses': G_losses,
'reconstruction_losses': reconstruction_losses}
self.writeLossDataToFile(training_history)
# Flush out prints each loop iteration
sys.stdout.flush()
#===============================================================================
# Help functions
def lse(self, y_true, y_pred):
loss = tf.reduce_mean(tf.squared_difference(y_pred, y_true))
return loss
def cycle_loss(self, y_true, y_pred):
loss = tf.reduce_mean(tf.abs(y_pred - y_true))
return loss
def truncateAndSave(self, real_, real, synthetic, reconstructed, path_name):
if len(real.shape) > 3:
real = real[0]
synthetic = synthetic[0]
reconstructed = reconstructed[0]
# Append and save
if real_ is not None:
if len(real_.shape) > 4:
real_ = real_[0]
image = np.hstack((real_[0], real, synthetic, reconstructed))
else:
image = np.hstack((real, synthetic, reconstructed))
if self.channels == 1:
image = image[:, :, 0]
toimage(image, cmin=-1, cmax=1).save(path_name)
def saveImages(self, epoch, real_image_A, real_image_B, num_saved_images=1):
directory = os.path.join('images', self.date_time)
if not os.path.exists(os.path.join(directory, 'A')):
os.makedirs(os.path.join(directory, 'A'))
os.makedirs(os.path.join(directory, 'B'))
os.makedirs(os.path.join(directory, 'Atest'))
os.makedirs(os.path.join(directory, 'Btest'))
testString = ''
real_image_Ab = None
real_image_Ba = None
for i in range(num_saved_images + 1):
if i == num_saved_images:
real_image_A = self.A_test[0]
real_image_B = self.B_test[0]
real_image_A = np.expand_dims(real_image_A, axis=0)
real_image_B = np.expand_dims(real_image_B, axis=0)
testString = 'test'
else:
#real_image_A = self.A_train[rand_A_idx[i]]
#real_image_B = self.B_train[rand_B_idx[i]]
if len(real_image_A.shape) < 4:
real_image_A = np.expand_dims(real_image_A, axis=0)
real_image_B = np.expand_dims(real_image_B, axis=0)
synthetic_image_B = self.G_A2B.predict(real_image_A)
synthetic_image_A = self.G_B2A.predict(real_image_B)
reconstructed_image_A = self.G_B2A.predict(synthetic_image_B)
reconstructed_image_B = self.G_A2B.predict(synthetic_image_A)
self.truncateAndSave(real_image_Ab, real_image_A, synthetic_image_B, reconstructed_image_A,
'images/{}/{}/epoch{}_sample{}.png'.format(
self.date_time, 'A' + testString, epoch, i))
self.truncateAndSave(real_image_Ba, real_image_B, synthetic_image_A, reconstructed_image_B,
'images/{}/{}/epoch{}_sample{}.png'.format(
self.date_time, 'B' + testString, epoch, i))
def save_tmp_images(self, real_image_A, real_image_B, synthetic_image_A, synthetic_image_B):
try:
reconstructed_image_A = self.G_B2A.predict(synthetic_image_B)
reconstructed_image_B = self.G_A2B.predict(synthetic_image_A)
real_images = np.vstack((real_image_A[0], real_image_B[0]))
synthetic_images = np.vstack((synthetic_image_B[0], synthetic_image_A[0]))
reconstructed_images = np.vstack((reconstructed_image_A[0], reconstructed_image_B[0]))
self.truncateAndSave(None, real_images, synthetic_images, reconstructed_images,
'images/{}/{}.png'.format(
self.date_time, 'tmp'))
except: # Ignore if file is open
pass
def get_lr_linear_decay_rate(self):
# Calculate decay rates
if self.use_data_generator:
max_nr_images = len(self.data_generator)
else:
max_nr_images = max(len(self.A_train), len(self.B_train))
updates_per_epoch_D = 2 * max_nr_images + self.discriminator_iterations - 1
updates_per_epoch_G = max_nr_images + self.generator_iterations - 1
if self.use_identity_learning:
updates_per_epoch_G *= (1 + 1 / self.identity_mapping_modulus)
denominator_D = (self.epochs - self.decay_epoch) * updates_per_epoch_D
denominator_G = (self.epochs - self.decay_epoch) * updates_per_epoch_G
decay_D = self.learning_rate_D / denominator_D
decay_G = self.learning_rate_G / denominator_G
return decay_D, decay_G
def update_lr(self, model, decay):
new_lr = K.get_value(model.optimizer.lr) - decay
if new_lr < 0:
new_lr = 0
# print(K.get_value(model.optimizer.lr))
K.set_value(model.optimizer.lr, new_lr)
def print_ETA(self, start_time, epoch, epoch_iterations, loop_index):
passed_time = time.time() - start_time
iterations_so_far = ((epoch - 1) * epoch_iterations + loop_index) / self.batch_size
iterations_total = self.epochs * epoch_iterations / self.batch_size
iterations_left = iterations_total - iterations_so_far
eta = round(passed_time / (iterations_so_far + 1e-5) * iterations_left)
passed_time_string = str(datetime.timedelta(seconds=round(passed_time)))
eta_string = str(datetime.timedelta(seconds=eta))
print('Time passed', passed_time_string, ': ETA in', eta_string)
#===============================================================================
# Save and load
def saveModel(self, model, epoch):
# Create folder to save model architecture and weights
directory = os.path.join('saved_models', self.date_time)
if not os.path.exists(directory):
os.makedirs(directory)
model_path_w = 'saved_models/{}/{}_weights_epoch_{}.hdf5'.format(self.date_time, model.name, epoch)
model.save_weights(model_path_w)
model_path_m = 'saved_models/{}/{}_model_epoch_{}.json'.format(self.date_time, model.name, epoch)
model.save_weights(model_path_m)
json_string = model.to_json()
with open(model_path_m, 'w') as outfile:
json.dump(json_string, outfile)
print('{} has been saved in saved_models/{}/'.format(model.name, self.date_time))
def writeLossDataToFile(self, history):
keys = sorted(history.keys())
with open('images/{}/loss_output.csv'.format(self.date_time), 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerow(keys)
writer.writerows(zip(*[history[key] for key in keys]))
def writeMetaDataToJSON(self):
directory = os.path.join('images', self.date_time)
if not os.path.exists(directory):
os.makedirs(directory)
# Save meta_data
data = {}
data['meta_data'] = []
data['meta_data'].append({
'img shape: height,width,channels': self.img_shape,
'batch size': self.batch_size,
'save interval': self.save_interval,
'normalization function': str(self.normalization),
'lambda_1': self.lambda_1,
'lambda_2': self.lambda_2,
'lambda_d': self.lambda_D,
'learning_rate_D': self.learning_rate_D,
'learning rate G': self.learning_rate_G,
'epochs': self.epochs,
'use linear decay on learning rates': self.use_linear_decay,
'use multiscale discriminator': self.use_multiscale_discriminator,
'epoch where learning rate linear decay is initialized (if use_linear_decay)': self.decay_epoch,
'generator iterations': self.generator_iterations,
'discriminator iterations': self.discriminator_iterations,
'use patchGan in discriminator': self.use_patchgan,
'beta 1': self.beta_1,
'beta 2': self.beta_2,
'REAL_LABEL': self.REAL_LABEL,
'number of A train examples': len(self.A_train),
'number of B train examples': len(self.B_train),
'number of A test examples': len(self.A_test),
'number of B test examples': len(self.B_test),
})
with open('images/{}/meta_data.json'.format(self.date_time), 'w') as outfile:
json.dump(data, outfile, sort_keys=True)
def load_model_and_weights(self, model):
path_to_model = os.path.join('generate_images', 'models', '{}.json'.format(model.name))
path_to_weights = os.path.join('generate_images', 'models', '{}.hdf5'.format(model.name))
#model = model_from_json(path_to_model)
model.load_weights(path_to_weights)
def load_model_and_generate_synthetic_images(self):
response = input('Are you sure you want to generate synthetic images instead of training? (y/n): ')[0].lower()
if response == 'y':
self.load_model_and_weights(self.G_A2B)
self.load_model_and_weights(self.G_B2A)
synthetic_images_B = self.G_A2B.predict(self.A_test)
synthetic_images_A = self.G_B2A.predict(self.B_test)
def save_image(image, name, domain):
if self.channels == 1:
image = image[:, :, 0]
toimage(image, cmin=-1, cmax=1).save(os.path.join(
'generate_images', 'synthetic_images', domain, name))
# Test A images
for i in range(len(synthetic_images_A)):
# Get the name from the image it was conditioned on
name = self.testB_image_names[i].strip('.png') + '_synthetic.png'
synt_A = synthetic_images_A[i]
save_image(synt_A, name, 'A')
# Test B images
for i in range(len(synthetic_images_B)):
# Get the name from the image it was conditioned on
name = self.testA_image_names[i].strip('.png') + '_synthetic.png'
synt_B = synthetic_images_B[i]
save_image(synt_B, name, 'B')
print('{} synthetic images have been generated and placed in ./generate_images/synthetic_images'
.format(len(self.A_test) + len(self.B_test)))
# reflection padding taken from
# https://github.com/fastai/courses/blob/master/deeplearning2/neural-style.ipynb
class ReflectionPadding2D(Layer):
def __init__(self, padding=(1, 1), **kwargs):
self.padding = tuple(padding)
self.input_spec = [InputSpec(ndim=4)]
super(ReflectionPadding2D, self).__init__(**kwargs)
def compute_output_shape(self, s):
return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])
def call(self, x, mask=None):
w_pad, h_pad = self.padding
return tf.pad(x, [[0, 0], [h_pad, h_pad], [w_pad, w_pad], [0, 0]], 'REFLECT')
class ImagePool():
def __init__(self, pool_size):
self.pool_size = pool_size
if self.pool_size > 0:
self.num_imgs = 0
self.images = []
def query(self, images):
if self.pool_size == 0:
return images
return_images = []
for image in images:
if len(image.shape) == 3:
image = image[np.newaxis, :, :, :]
if self.num_imgs < self.pool_size: # fill up the image pool
self.num_imgs = self.num_imgs + 1
if len(self.images) == 0:
self.images = image
else:
self.images = np.vstack((self.images, image))
if len(return_images) == 0:
return_images = image
else:
return_images = np.vstack((return_images, image))
else: # 50% chance that we replace an old synthetic image
p = random.uniform(0, 1)
if p > 0.5:
random_id = random.randint(0, self.pool_size - 1)
tmp = self.images[random_id, :, :, :]
tmp = tmp[np.newaxis, :, :, :]
self.images[random_id, :, :, :] = image[0, :, :, :]
if len(return_images) == 0:
return_images = tmp
else:
return_images = np.vstack((return_images, tmp))
else:
if len(return_images) == 0:
return_images = image
else:
return_images = np.vstack((return_images, image))
return return_images
if __name__ == '__main__':
GAN = CycleGAN()