Welcome to the MvObjectFitting repository, a comprehensive toolkit designed for object fitting from multi-view images.
- April 2, 2024: The source code has been fully uploaded!
To set up your environment, follow these steps:
conda create -n MvObjectFitting python=3.8 -y
conda activate MvObjectFitting
conda install --file conda_install_cuda117_package.txt -c nvidia
pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
git clone https://github.com/JiangWenPL/multiperson.git && cd multiperson/neural_renderer
python setup.py install
Note: If you are using the latest versions of PyTorch, you may encounter an error related to the use of "AT_CHECK". To resolve this issue, you should replace instances of AT_CHECK with TORCH_CHECK in your code.
Organize your dataset as follows:
├─ Path_of_Folder
├─ calibration.json # camera intrinsics and world-to-cam extrinsics
├─ object_id.txt
├─ mask
├─ 0
├─ 000000.jpg
├─ 000001.jpg
├─ 000003.jpg
...
...
├─ videos
├─ data1.mp4
├─ data2.mp4
...
├─ data76.mp4
├─ Object Template
├─ object_name_1.obj
├─ object_name_2.obj
...
...
python object_fitting_256_spso.py
python object_fitting_256_mpmo.py
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.