Skip to content

Commit

Permalink
differences are barely noticeable
Browse files Browse the repository at this point in the history
  • Loading branch information
pat-alt committed Nov 17, 2023
1 parent 7a96902 commit 0735262
Show file tree
Hide file tree
Showing 15 changed files with 1,592 additions and 12 deletions.
6 changes: 3 additions & 3 deletions _freeze/paper/src/paper/execute-results/tex.json

Large diffs are not rendered by default.

62 changes: 62 additions & 0 deletions paper/paper.aux
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{goodfellow2014explaining}
\citation{wilson2020case}
\citation{wilson2020case}
\citation{blundell2015weight}
\citation{gal2016dropout}
\citation{lakshminarayanan2016simple}
\citation{immer2020improving}
\citation{daxberger2021laplace}
\citation{martens2015optimizing}
\citation{lawrence2001variational}
\citation{immer2020improving}
\citation{daxberger2021laplace}
\citation{immer2020improving}
\citation{daxberger2021laplace}
\newlabel{@firstpg}{{}{1}{}{Doc-Start}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1}Background}{1}{section.1}\protected@file@percent }
\newlabel{sec-intro}{{1}{1}{Background}{section.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Laplace Approximation for Deep Learning}{1}{section.2}\protected@file@percent }
\newlabel{sec-body}{{2}{1}{Laplace Approximation for Deep Learning}{section.2}{}}
\newlabel{eq-bma}{{1}{1}{Laplace Approximation for Deep Learning}{equation.2.1}{}}
\newlabel{eq-glm}{{2}{1}{Laplace Approximation for Deep Learning}{equation.2.2}{}}
\newlabel{eq-glm-predictive}{{3}{1}{Laplace Approximation for Deep Learning}{equation.2.3}{}}
\citation{daxberger2021laplace}
\bibstyle{juliacon}
\bibdata{ref.bib}
\bibcite{blundell2015weight}{1}
\bibcite{daxberger2021laplace}{2}
\bibcite{gal2016dropout}{3}
\bibcite{goodfellow2014explaining}{4}
\bibcite{immer2020improving}{5}
\bibcite{lakshminarayanan2016simple}{6}
\bibcite{lawrence2001variational}{7}
\bibcite{martens2015optimizing}{8}
\bibcite{wilson2020case}{9}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Posterior predictive distribution for binary classifier: plugin estimate (left), untuned LA (center) and optimized LA (right). The colour of the contour indicates the predicted class probabilities: the more yellow a region, the more confident the classifier that samples belong to the orange class.}}{2}{figure.1}\protected@file@percent }
\newlabel{fig-class}{{1}{2}{Posterior predictive distribution for binary classifier: plugin estimate (left), untuned LA (center) and optimized LA (right). The colour of the contour indicates the predicted class probabilities: the more yellow a region, the more confident the classifier that samples belong to the orange class}{figure.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}\texttt {LaplaceRedux.jl} --- a Julia implementation}{2}{section.3}\protected@file@percent }
\newlabel{laplaceredux.jl-a-julia-implementation}{{3}{2}{\texorpdfstring {\texttt {LaplaceRedux.jl} --- a Julia implementation}{LaplaceRedux.jl --- a Julia implementation}}{section.3}{}}
\newlabel{lst:laplace}{{3}{2}{}{lstlisting.-1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Discussion and Outlook}{2}{section.4}\protected@file@percent }
\newlabel{sec-con}{{4}{2}{Discussion and Outlook}{section.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Posterior predictive distribution for regressor: wide regions of the confidence interval (shaded area) indicate high predictive uncertainty.}}{2}{figure.2}\protected@file@percent }
\newlabel{fig-reg}{{2}{2}{Posterior predictive distribution for regressor: wide regions of the confidence interval (shaded area) indicate high predictive uncertainty}{figure.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5}Acknowledgements}{2}{section.5}\protected@file@percent }
\newlabel{sec-ack}{{5}{2}{Acknowledgements}{section.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6}References}{2}{section.6}\protected@file@percent }
\gdef \@abspage@last{2}
47 changes: 47 additions & 0 deletions paper/paper.bbl
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
\begin{thebibliography}{1}

\bibitem{blundell2015weight}
Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network.
In {\em International Conference on Machine Learning}, pages 1613--1622. {PMLR}.

\bibitem{daxberger2021laplace}
Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig.
Laplace {{Redux-Effortless Bayesian Deep Learning}}.
34.

\bibitem{gal2016dropout}
Yarin Gal and Zoubin Ghahramani.
Dropout as a bayesian approximation: {{Representing}} model uncertainty in deep learning.
In {\em International Conference on Machine Learning}, pages 1050--1059. {PMLR}.

\bibitem{goodfellow2014explaining}
Ian~J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples.
arxiv:\href{http://arxiv.org/abs/1412.6572}{1412.6572}.

\bibitem{immer2020improving}
Alexander Immer, Maciej Korzepa, and Matthias Bauer.
Improving predictions of bayesian neural networks via local linearization.
arxiv:\href{http://arxiv.org/abs/2008.08400}{2008.08400}.

\bibitem{lakshminarayanan2016simple}
Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
Simple and scalable predictive uncertainty estimation using deep ensembles.
arxiv:\href{http://arxiv.org/abs/1612.01474}{1612.01474}.

\bibitem{lawrence2001variational}
Neil~David Lawrence.
Variational inference in probabilistic models.

\bibitem{martens2015optimizing}
James Martens and Roger Grosse.
Optimizing neural networks with kronecker-factored approximate curvature.
In {\em International conference on machine learning}, pages 2408--2417. PMLR, 2015.

\bibitem{wilson2020case}
Andrew~Gordon Wilson.
The case for {{Bayesian}} deep learning.
arxiv:\href{http://arxiv.org/abs/2001.10995}{2001.10995}.

\end{thebibliography}
57 changes: 57 additions & 0 deletions paper/paper.blg
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
This is BibTeX, Version 0.99d (TeX Live 2023)
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003
The top-level auxiliary file: paper.aux
The style file: juliacon.bst
Database file #1: ref.bib
Warning--entry type for "lawrence2001variational" isn't style-file defined
--line 1053 of file ref.bib
Warning--empty year in blundell2015weight
Warning--empty journal in daxberger2021laplace
Warning--empty year in daxberger2021laplace
Warning--empty year in gal2016dropout
Warning--empty note in goodfellow2014explaining
Warning--empty note in immer2020improving
Warning--empty note in lakshminarayanan2016simple
Warning--empty note in wilson2020case
You've used 9 entries,
2314 wiz_defined-function locations,
564 strings with 5555 characters,
and the built_in function-call counts, 3240 in all, are:
= -- 328
> -- 150
< -- 3
+ -- 60
- -- 50
* -- 216
:= -- 517
add.period$ -- 29
call.type$ -- 9
change.case$ -- 52
chr.to.int$ -- 0
cite$ -- 17
duplicate$ -- 125
empty$ -- 251
format.name$ -- 50
if$ -- 702
int.to.chr$ -- 0
int.to.str$ -- 9
missing$ -- 4
newline$ -- 47
num.names$ -- 18
pop$ -- 74
preamble$ -- 1
purify$ -- 43
quote$ -- 0
skip$ -- 107
stack$ -- 0
substring$ -- 166
swap$ -- 40
text.length$ -- 3
text.prefix$ -- 0
top$ -- 0
type$ -- 36
warning$ -- 8
while$ -- 27
width$ -- 10
write$ -- 88
(There were 9 warnings)
Loading

0 comments on commit 0735262

Please sign in to comment.