Skip to content

Commit

Permalink
implement in-place ldiv! for Cholesky factorization (#547)
Browse files Browse the repository at this point in the history
* implement solve2 without workspace arguments

* implement in-place ldiv! for Cholesky factorization

* ldiv! with Dense not required

* import ldiv! for tests

* safer

* fix Dense case and add more tests

* rearrange wrap_dense_and_ptr

* more tests
  • Loading branch information
ranocha authored Aug 7, 2024
1 parent 1527014 commit b8a13ef
Show file tree
Hide file tree
Showing 2 changed files with 126 additions and 6 deletions.
88 changes: 87 additions & 1 deletion src/solvers/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ using LinearAlgebra
using LinearAlgebra: RealHermSymComplexHerm, AdjOrTrans
import LinearAlgebra: (\), AdjointFactorization,
cholesky, cholesky!, det, diag, ishermitian, isposdef,
issuccess, issymmetric, ldlt, ldlt!, logdet,
issuccess, issymmetric, ldiv!, ldlt, ldlt!, logdet,
lowrankdowndate, lowrankdowndate!, lowrankupdate, lowrankupdate!

using SparseArrays
Expand Down Expand Up @@ -913,6 +913,32 @@ function Base.convert(::Type{Dense{Tnew}}, A::Dense{T}) where {Tnew, T}
end
Base.convert(::Type{Dense{T}}, A::Dense{T}) where T = A

# Just calling Dense(x) or Dense(b) will allocate new
# `cholmod_dense_struct`s in CHOLMOD. Instead, we want to reuse
# the existing memory. We can do this by creating new
# `cholmod_dense_struct`s and filling them manually.
function wrap_dense_and_ptr(x::StridedVecOrMat{T}) where {T <: VTypes}
dense_x = cholmod_dense_struct()
dense_x.nrow = size(x, 1)
dense_x.ncol = size(x, 2)
dense_x.nzmax = length(x)
dense_x.d = stride(x, 2)
dense_x.x = pointer(x)
dense_x.z = C_NULL
dense_x.xtype = xtyp(eltype(x))
dense_x.dtype = dtyp(eltype(x))
return dense_x, pointer_from_objref(dense_x)
end
# We need to use a special handling for the case of `Dense`
# input arrays since the `pointer` refers to the pointer to the
# `cholmod_dense`, not to the array values themselves as for
# standard arrays.
function wrap_dense_and_ptr(x::Dense{T}) where {T <: VTypes}
dense_x_ptr = x.ptr
dense_x = unsafe_load(dense_x_ptr)
return dense_x, pointer_from_objref(dense_x)
end

# This constructor assumes zero based colptr and rowval
function Sparse(m::Integer, n::Integer,
colptr0::Vector{Ti}, rowval0::Vector{Ti},
Expand Down Expand Up @@ -1913,6 +1939,66 @@ const AbstractSparseVecOrMatInclAdjAndTrans = Union{AbstractSparseVecOrMat, AdjO
throw(ArgumentError("self-adjoint sparse system solve not implemented for sparse rhs B," *
" consider to convert B to a dense array"))

# in-place ldiv!
for TI in IndexTypes
@eval function ldiv!(x::StridedVecOrMat{T},
L::Factor{T, $TI},
b::StridedVecOrMat{T}) where {T<:VTypes}
if x === b
throw(ArgumentError("output array must not be aliased with input array"))
end
if size(L, 1) != size(b, 1)
throw(DimensionMismatch("Factorization and RHS should have the same number of rows. " *
"Factorization has $(size(L, 2)) rows, but RHS has $(size(b, 1)) rows."))
end
if size(L, 2) != size(x, 1)
throw(DimensionMismatch("Factorization and solution should match sizes. " *
"Factorization has $(size(L, 1)) columns, but solution has $(size(x, 1)) rows."))
end
if size(x, 2) != size(b, 2)
throw(DimensionMismatch("Solution and RHS should have the same number of columns. " *
"Solution has $(size(x, 2)) columns, but RHS has $(size(b, 2)) columns."))
end
if !issuccess(L)
s = unsafe_load(pointer(L))
if s.is_ll == 1
throw(LinearAlgebra.PosDefException(s.minor))
else
throw(LinearAlgebra.ZeroPivotException(s.minor))
end
end

# Just calling Dense(x) or Dense(b) will allocate new
# `cholmod_dense_struct`s in CHOLMOD. Instead, we want to reuse
# the existing memory. We can do this by creating new
# `cholmod_dense_struct`s and filling them manually.
dense_x, dense_x_ptr = wrap_dense_and_ptr(x)
dense_b, dense_b_ptr = wrap_dense_and_ptr(b)

X_Handle = Ptr{cholmod_dense_struct}(dense_x_ptr)
Y_Handle = Ptr{cholmod_dense_struct}(C_NULL)
E_Handle = Ptr{cholmod_dense_struct}(C_NULL)
status = GC.@preserve x dense_x b dense_b begin
$(cholname(:solve2, TI))(
CHOLMOD_A, L,
Ref(dense_b), C_NULL,
Ref(X_Handle), C_NULL,
Ref(Y_Handle),
Ref(E_Handle),
getcommon($TI))
end
if Y_Handle != C_NULL
free!(Y_Handle)
end
if E_Handle != C_NULL
free!(E_Handle)
end
@assert !iszero(status)

return x
end
end

## Other convenience methods
function diag(F::Factor{Tv, Ti}) where {Tv, Ti}
f = unsafe_load(typedpointer(F))
Expand Down
44 changes: 39 additions & 5 deletions test/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ using Random
using Serialization
using LinearAlgebra:
I, cholesky, cholesky!, det, diag, eigmax, ishermitian, isposdef, issuccess,
issymmetric, ldlt, ldlt!, logdet, norm, opnorm, Diagonal, Hermitian, Symmetric,
issymmetric, ldiv!, ldlt, ldlt!, logdet, norm, opnorm, Diagonal, Hermitian, Symmetric,
PosDefException, ZeroPivotException, RowMaximum
using SparseArrays
using SparseArrays: getcolptr
Expand Down Expand Up @@ -138,6 +138,9 @@ Random.seed!(123)
@test CHOLMOD.isvalid(chma)
@test unsafe_load(pointer(chma)).is_ll == 1 # check that it is in fact an LLt
@test chma\b x
x2 = zero(x)
@inferred ldiv!(x2, chma, b)
@test x2 x
@test nnz(chma) == 489
@test nnz(cholesky(A, perm=1:size(A,1))) > nnz(chma)
@test size(chma) == size(A)
Expand Down Expand Up @@ -281,6 +284,37 @@ end
end
end

@testset "ldiv! $Tv $Ti" begin
local A, x, x2, b, X, X2, B
A = sprand(10, 10, 0.1)
A = I + A * A'
A = convert(SparseMatrixCSC{Tv,Ti}, A)
factor = cholesky(A)

x = fill(Tv(1), 10)
b = A * x
x2 = zero(x)
@inferred ldiv!(x2, factor, b)
@test x2 x

X = fill(Tv(1), 10, 5)
B = A * X
X2 = zero(X)
@inferred ldiv!(X2, factor, B)
@test X2 X

c = fill(Tv(1), size(x, 1) + 1)
C = fill(Tv(1), size(X, 1) + 1, size(X, 2))
y = fill(Tv(1), size(x, 1) + 1)
Y = fill(Tv(1), size(X, 1) + 1, size(X, 2))
@test_throws DimensionMismatch ldiv!(y, factor, b)
@test_throws DimensionMismatch ldiv!(Y, factor, B)
@test_throws DimensionMismatch ldiv!(x2, factor, c)
@test_throws DimensionMismatch ldiv!(X2, factor, C)
@test_throws DimensionMismatch ldiv!(X2, factor, b)
@test_throws DimensionMismatch ldiv!(x2, factor, B)
end

end #end for Ti ∈ itypes

for Tv (Float32, Float64)
Expand Down Expand Up @@ -365,9 +399,9 @@ end
@test isa(CHOLMOD.eye(3), CHOLMOD.Dense{Float64})
end

@testset "Core functionality ($elty, $elty2)" for
elty in (Tv, Complex{Tv}),
Tv2 in (Float32, Float64),
@testset "Core functionality ($elty, $elty2)" for
elty in (Tv, Complex{Tv}),
Tv2 in (Float32, Float64),
elty2 in (Tv2, Complex{Tv2}),
Ti itypes
A1 = sparse(Ti[1:5; 1], Ti[1:5; 2], elty <: Real ? randn(Tv, 6) : complex.(randn(Tv, 6), randn(Tv, 6)))
Expand Down Expand Up @@ -972,7 +1006,7 @@ end
f = ones(size(K, 1))
u = K \ f
residual = norm(f - K * u) / norm(f)
@test residual < 1e-6
@test residual < 1e-6
end

@testset "wrapped sparse matrices" begin
Expand Down

0 comments on commit b8a13ef

Please sign in to comment.