Skip to content

Commit

Permalink
optimizer: alias-aware SROA
Browse files Browse the repository at this point in the history
Enhances SROA of mutables using the novel Julia-level escape analysis (on top of #43800):
1. alias-aware SROA, mutable ϕ-node elimination
2. `isdefined` check elimination
3. load-forwarding for non-eliminable but analyzable mutables

---

1. alias-aware SROA, mutable ϕ-node elimination

EA's alias analysis allows this new SROA to handle nested mutables allocations
pretty well. Now we can eliminate the heap allocations completely from
this insanely nested examples by the single analysis/optimization pass:
```julia
julia> function refs(x)
           (Ref(Ref(Ref(Ref(Ref(Ref(Ref(Ref(Ref(Ref((x))))))))))))[][][][][][][][][][]
       end
refs (generic function with 1 method)

julia> refs("julia"); @allocated refs("julia")
0
```

EA can also analyze escape of ϕ-node as well as its aliasing.
Mutable ϕ-nodes would be eliminated even for a very tricky case as like:
```julia
julia> code_typed((Bool,String,)) do cond, x
           # these allocation form multiple ϕ-nodes
           if cond
               ϕ2 = ϕ1 = Ref{Any}("foo")
           else
               ϕ2 = ϕ1 = Ref{Any}("bar")
           end
           ϕ2[] = x
           y = ϕ1[] # => x
           return y
       end
1-element Vector{Any}:
 CodeInfo(
1 ─     goto #3 if not cond
2 ─     goto #4
3 ─     nothing::Nothing
4 ┄     return x
) => Any
```

Combined with the alias analysis and ϕ-node handling above,
allocations in the following "realistic" examples will be optimized:
```julia
julia> # demonstrate the power of our field / alias analysis with realistic end to end examples
       # adapted from http://wiki.luajit.org/Allocation-Sinking-Optimization#implementation%5B
       abstract type AbstractPoint{T} end

julia> struct Point{T} <: AbstractPoint{T}
           x::T
           y::T
       end

julia> mutable struct MPoint{T} <: AbstractPoint{T}
           x::T
           y::T
       end

julia> add(a::P, b::P) where P<:AbstractPoint = P(a.x + b.x, a.y + b.y);

julia> function compute_point(T, n, ax, ay, bx, by)
           a = T(ax, ay)
           b = T(bx, by)
           for i in 0:(n-1)
               a = add(add(a, b), b)
           end
           a.x, a.y
       end;

julia> function compute_point(n, a, b)
           for i in 0:(n-1)
               a = add(add(a, b), b)
           end
           a.x, a.y
       end;

julia> function compute_point!(n, a, b)
           for i in 0:(n-1)
               a′ = add(add(a, b), b)
               a.x = a′.x
               a.y = a′.y
           end
       end;

julia> compute_point(MPoint, 10, 1+.5, 2+.5, 2+.25, 4+.75);

julia> compute_point(MPoint, 10, 1+.5im, 2+.5im, 2+.25im, 4+.75im);

julia> @allocated compute_point(MPoint, 10000, 1+.5, 2+.5, 2+.25, 4+.75)
0

julia> @allocated compute_point(MPoint, 10000, 1+.5im, 2+.5im, 2+.25im, 4+.75im)
0

julia> compute_point(10, MPoint(1+.5, 2+.5), MPoint(2+.25, 4+.75));

julia> compute_point(10, MPoint(1+.5im, 2+.5im), MPoint(2+.25im, 4+.75im));

julia> @allocated compute_point(10000, MPoint(1+.5, 2+.5), MPoint(2+.25, 4+.75))
0

julia> @allocated compute_point(10000, MPoint(1+.5im, 2+.5im), MPoint(2+.25im, 4+.75im))
0

julia> af, bf = MPoint(1+.5, 2+.5), MPoint(2+.25, 4+.75);

julia> ac, bc = MPoint(1+.5im, 2+.5im), MPoint(2+.25im, 4+.75im);

julia> compute_point!(10, af, bf);

julia> compute_point!(10, ac, bc);

julia> @allocated compute_point!(10000, af, bf)
0

julia> @allocated compute_point!(10000, ac, bc)
0
```

2. `isdefined` check elimination

This commit also implements a simple optimization to eliminate
`isdefined` call by checking load-fowardability.
This optimization may be especially useful to eliminate extra allocation
involved with a capturing closure, e.g.:
```julia
julia> callit(f, args...) = f(args...);

julia> function isdefined_elim()
           local arr::Vector{Any}
           callit() do
               arr = Any[]
           end
           return arr
       end;

julia> code_typed(isdefined_elim)
1-element Vector{Any}:
 CodeInfo(
1 ─ %1 = $(Expr(:foreigncall, :(:jl_alloc_array_1d), Vector{Any}, svec(Any, Int64), 0, :(:ccall), Vector{Any}, 0, 0))::Vector{Any}
└──      goto #3 if not true
2 ─      goto #4
3 ─      $(Expr(:throw_undef_if_not, :arr, false))::Any
4 ┄      return %1
) => Vector{Any}
```

3. load-forwarding for non-eliminable but analyzable mutables

EA also allows us to forward loads even when the mutable allocation
can't be eliminated but still its fields are known precisely.
The load forwarding might be useful since it may derive new type information
that succeeding optimization passes can use (or just because it allows
simpler code transformations down the load):
```julia
julia> code_typed((Bool,String,)) do c, s
           r = Ref{Any}(s)
           if c
               return r[]::String # adce_pass! will further eliminate this type assert call also
           else
               return r
           end
       end
1-element Vector{Any}:
 CodeInfo(
1 ─ %1 = %new(Base.RefValue{Any}, s)::Base.RefValue{Any}
└──      goto #3 if not c
2 ─      return s
3 ─      return %1
) => Union{Base.RefValue{Any}, String}
```

---

Please refer to the newly added test cases for more examples.
Also, EA's alias analysis already succeeds to reason about arrays, and
so this EA-based SROA will hopefully be generalized for array SROA as well.
  • Loading branch information
aviatesk committed Feb 14, 2022
1 parent 25635ea commit 325f414
Show file tree
Hide file tree
Showing 7 changed files with 1,252 additions and 422 deletions.
6 changes: 5 additions & 1 deletion base/compiler/bootstrap.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,11 @@ let
world = get_world_counter()
interp = NativeInterpreter(world)

analyze_escapes_tt = Tuple{typeof(analyze_escapes), IRCode, Int, Bool, typeof(get_escape_cache(code_cache(interp)))}
analyze_escapes_tt = Any[typeof(analyze_escapes), IRCode, Int, Bool,
# typeof(get_escape_cache(code_cache(interp))) # once we enable IPO EA
typeof(null_escape_cache)
]
analyze_escapes_tt = Tuple{analyze_escapes_tt...}
fs = Any[
# we first create caches for the optimizer, because they contain many loop constructions
# and they're better to not run in interpreter even during bootstrapping
Expand Down
26 changes: 17 additions & 9 deletions base/compiler/optimize.jl
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ and then caches it into a global cache for later interprocedural propagation.
cache_escapes!(caller::InferenceResult, estate::EscapeState) =
caller.argescapes = ArgEscapeCache(estate)

function get_escape_cache(mi_cache::MICache) where MICache
function ipo_escape_cache(mi_cache::MICache) where MICache
return function (linfo::Union{InferenceResult,MethodInstance})
if isa(linfo, InferenceResult)
argescapes = linfo.argescapes
Expand All @@ -110,6 +110,7 @@ function get_escape_cache(mi_cache::MICache) where MICache
return argescapes !== nothing ? argescapes::ArgEscapeCache : nothing
end
end
null_escape_cache(linfo::Union{InferenceResult,MethodInstance}) = nothing

mutable struct OptimizationState
linfo::MethodInstance
Expand Down Expand Up @@ -540,17 +541,24 @@ function run_passes(ci::CodeInfo, sv::OptimizationState, caller::InferenceResult
# TODO: Domsorting can produce an updated domtree - no need to recompute here
@timeit "compact 1" ir = compact!(ir)
nargs = let def = sv.linfo.def; isa(def, Method) ? Int(def.nargs) : 0; end
get_escape_cache = (@__MODULE__).get_escape_cache(sv.inlining.mi_cache)
if is_ipo_profitable(ir, nargs)
@timeit "IPO EA" begin
state = analyze_escapes(ir, nargs, false, get_escape_cache)
cache_escapes!(caller, state)
end
end
# if is_ipo_profitable(ir, nargs)
# @timeit "IPO EA" begin
# state = analyze_escapes(ir,
# nargs, #=call_resolved=#false, ipo_escape_cache(sv.inlining.mi_cache))
# cache_escapes!(caller, state)
# end
# end
@timeit "Inlining" ir = ssa_inlining_pass!(ir, ir.linetable, sv.inlining, ci.propagate_inbounds)
# @timeit "verify 2" verify_ir(ir)
@timeit "compact 2" ir = compact!(ir)
@timeit "SROA" ir = sroa_pass!(ir)
@timeit "SROA" ir, memory_opt = linear_pass!(ir)
if memory_opt
@timeit "memory_opt_pass!" begin
@timeit "Local EA" estate = analyze_escapes(ir,
nargs, #=call_resolved=#true, null_escape_cache)
@timeit "memory_opt_pass!" ir = memory_opt_pass!(ir, estate)
end
end
@timeit "ADCE" ir = adce_pass!(ir)
@timeit "type lift" ir = type_lift_pass!(ir)
@timeit "compact 3" ir = compact!(ir)
Expand Down
Loading

0 comments on commit 325f414

Please sign in to comment.