Skip to content

A package for computing the FFT with arbitrary floating point numbers

License

Notifications You must be signed in to change notification settings

JuliaApproximation/GenericFFT.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GenericFFT.jl

Build Status codecov docs-stable docs-dev pkgeval

GenericFFT.jl implements a Fast Fourier Transform for generic floating point number types.

The transforms provided have the right computational complexity. However, for the time being, the implementations are crude and far from optimal. Please consider contributing improvements to the package and filing issues for missing functionality.

Installation

Installation is straightforward:

pkg> add GenericFFT

julia> using GenericFFT

Usage for high-precision FFTs

The main reason for using GenericFFT is high-precision calculations. For example:

julia> using GenericFFT

julia> fft(rand(Complex{BigFloat}, 2))
2-element Vector{Complex{BigFloat}}:
 0.8071607526060331187983248443648586158893950448440777116281652091029932491471374 + 1.058204007570364569492040922226041865648762106924785198005758849420721686004251im
 0.3195699335469630499276014344115859560577992018210584550701583748039853943955188 + 0.196737316420669631800810230623687615407691727320510522950346182385847637522683im

Other packages provide high-precision floating point numbers, including QuadMath.jl and DoubleFloats.jl.

julia> using GenericFFT, DoubleFloats

julia> fft(rand(Double64, 2))
2-element Vector{Complex{Double64}}:
 0.4026739024263829 + 0.0im
 0.3969515892883767 + 0.0im

History

The code in this package was developed in the FastTransforms.jl package by Mikael Slevinsky. The code was moved to a separate package in July 2022 from this file.

About

A package for computing the FFT with arbitrary floating point numbers

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages