Update: 2024.08.15
github-actions
released this
19 Aug 12:23
·
0 commits
to 046be81ccfc20a31f6dbc39a73bdb7667842054c
since this release
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- paper-qa (🥇27 · ⭐ 3.8K · 📈) - LLM Chain for answering questions from documents with citations.
Apache-2
ai-agent
- DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems.
Apache-2
- pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics.
MIT
general-tool
probabilistic
- e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks.
Apache-2
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc.
LGPL-3.0
- Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly.
CC-BY-4.0
general-ml
Python
- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases.
CC-BY-4.0
- openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks.
Custom
ML-IAP
C++
- MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery.
MIT
datasets
benchmarking
model-repository
➕ Added Projects
Projects that were recently added to this best-of list.
- QH9 (🥈12 · ⭐ 470 · ➕) - A Quantum Hamiltonian Prediction Benchmark.
CC-BY-NC-SA 4.0
ML-DFT
- DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492.
LGPL-3.0
ML-IAP
pretrained
workflows
datasets
- Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling.
MIT
transformer
pretrained
- OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning.
BSD-3
datasets
- PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs.
MIT
transfer-learning
pretrained
transformer
- SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that..
GPL-3.0
ML-IAP
MD
pretrained
- HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks.
BSD-3
- ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms).
MIT
generative
- MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry.
MIT
ML-IAP
pretrained
rep-learn
MD
- Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry.
Unlicensed
rep-learn
- load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets.
MIT
data-structures
- AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course.
MIT
chemistry
- HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix.
GPL-3.0
rep-learn
magnetism
C-lang
- AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences.
Apache-2
- Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML).
MIT
excited-states
general-tool
- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences..
MIT
datasets
- Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources.
Unlicensed
rep-learn
- Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference.
MIT
active-learning
- SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels.
MIT
viz
- Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials.
MIT
- AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the..
LGPL-3.0
community-resource
model-repository
- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields.
MIT
- ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials.
MIT
rep-learn
- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis.
MIT
- Cephalo (🥉6 · ⭐ 5 · 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design.
Apache-2
generative
multimodal
pretrained
- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals.
Apache-2
- ACEpsi.jl (🥉6 · ⭐ 2 · 💤) - ACE wave function parameterizations.
MIT
rep-eng
Julia
- crystal-text-llm (🥉5 · ⭐ 63 · 🐣) - Large language models to generate stable crystals.
CC-BY-NC-4.0
materials-discovery
- The Perovskite Database Project (🥉5 · ⭐ 58 · ➕) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form..
Unlicensed
community-resource
- Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 32 · 🐣) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction.
CC-BY-NC-4.0
pretrained
ML-IAP
general-tool
- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis...
MIT
- InfGCN for Electron Density Estimation (🥉5 · ⭐ 10 · 💤) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN.
MIT
rep-learn
- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic..
MIT
active-learning
MD
rep-eng
magnetism
- EGraFFBench (🥉5 · ⭐ 8 · 💤) -
Unlicensed
single-paper
benchmarking
ML-IAP
- GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💤) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-..
Unlicensed
- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B.
GPL-3.0
materials-discovery
catalysis
scikit-learn
single-paper
- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems.
Unlicensed
datasets
educational
rep-learn
- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher.
Unlicensed
structure-prediction
active-learning
- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure.
MIT
MD
- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper.
MIT
phase-transition
- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design.
MIT
autoML
benchmarking
single-paper
- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening.
GPL-3.0
active-learning
workflows
- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab.
MPL-2.0
- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic..
Custom
ML-IAP
MD
- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME..
Unlicensed
active-learning
structure-prediction
structure-optimization
rep-eng
Fortran
- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV..
Unlicensed
catalysis
rep-learn
- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features..
MIT
- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials.
Unlicensed
pretrained
MD
- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package.
Unlicensed
magnetism
MD
Fortran