Skip to content

An ipynb widget for propagating and evaluating the uncertainty when evaluating a function.

License

Notifications You must be signed in to change notification settings

JoostScheffer/Uncertainty-Propagator

Repository files navigation

⚠️ This widget is still work in progress ⚠️

Error propagation widget

An ipynb widget for propagating and evaluating the uncertainty when evaluating a function. Propagator screenshot

Usages

First import the Propagator class from the propagator module.

from uncertainty_propagator import Propagator
import numpy as np

Basic usage

prop = Propagator("I_0 * cos(theta + theta_0) + I_background")

Then use either the widget or the set_variables method to set the variables and their uncertainties. Use the following methods to evaluate the function and the uncertainty at one or multiple points.

y = prop.evaluate_function()
y_err = prop.evaluate_error_function()

Usage with predefined variables

  1.  from uncertainties import ufloat as uf
    
     x, a, b = sp.symbols("x a b")
     func = a * x + b
    
     prop = Propagator(func, {b: uf(20, 0), x: uf(10, 1)})
  2.  prop = Propagator("I_0 * cos(theta + theta_0) + I_background")
    
     theta = np.linspace(0, 2 * np.pi, 100)
     theta_err = 0.01 * theta
    
     prop.set_variables({
         "I_0": (1.0, 0.1),
         "theta": (theta, theta_err),
         "theta_0": 0.0,
         "I_background": 0.0
     })

About

An ipynb widget for propagating and evaluating the uncertainty when evaluating a function.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages