-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
39c1879
commit efd5044
Showing
2 changed files
with
74 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
\import Algebra.Group | ||
\import Algebra.Group.Sub | ||
\import Algebra.Monoid | ||
\import Algebra.Monoid.Category | ||
\import Algebra.Pointed | ||
\import Algebra.Pointed.Category | ||
\import Category (Cat, Precat) | ||
\import Category.Functor | ||
\import Category.Meta | ||
\import Category.Subcat | ||
\import Equiv | ||
\import Function | ||
\import Function.Meta | ||
\import Logic | ||
\import Logic.Meta | ||
\import Paths | ||
\import Paths.Meta | ||
\import Relation.Equivalence | ||
\import Set.Category | ||
\import Algebra.Group.Category | ||
\open Group | ||
\open Algebra.Group.Sub | ||
|
||
\func universal-quotient-morphism-setwise {G H : Group} (f : GroupHom G H) (N : NormalSubGroup G) | ||
(p : N SubGroupPreorder.<= f.Kernel) | ||
(a : N.quotient) : H \elim a | ||
| in~ n => f n | ||
| ~-equiv y x r => equality-check ((inverse (f y)) * (f x) ==< pmap (\lam y => y * (f x)) (inv f.func-inverse) >== | ||
f (inverse y) * (f x) ==< inv func-* >== | ||
f (inverse y * x) ==< lemma' f N p r >== ide `qed) | ||
\where | ||
\lemma lemma' {x y : G} (f : GroupHom G H) (N : NormalSubGroup G) (p : N SubGroupPreorder.<= f.Kernel) | ||
(r : N.contains ((inverse y) * x)) : f (inverse y * x) = ide => | ||
f (inverse y * x) ==< p ((inverse y) * x) r >== ide `qed | ||
|
||
\func uqms {G H : Group} (f : GroupHom G H) (N : NormalSubGroup G) (p : N SubGroupPreorder.<= f.Kernel) => universal-quotient-morphism-setwise f N p | ||
|
||
\func universal-quotient-morphism-multiplicative {G H : Group} (f : GroupHom G H) (N : NormalSubGroup G) (p : N SubGroupPreorder.<= f.Kernel) | ||
(x y : N.quotient) : uqms f N p (x N.quotient.* y) = (uqms f N p x) * (uqms f N p y) \elim x, y | ||
| in~ a, in~ a1 => uqms f N p ((in~ a) N.quotient.* (in~ a1)) ==< idp >== uqms f N p (in~ (a * a1)) | ||
==< idp >== f (a * a1) ==< f.func-* >== (f a) * (f a1) | ||
==< pmap ((f a)*) idp >== (f a) * uqms f N p (in~ a1) | ||
==< pmap (\lam x => x * uqms f N p (in~ a1)) idp >== | ||
(uqms f N p (in~ a)) * (uqms f N p (in~ a1)) `qed | ||
|
||
\func universal-quotient-morph {G H : Group} (f : GroupHom G H) (N : NormalSubGroup G) | ||
(p : N SubGroupPreorder.<= f.Kernel) : GroupHom N.quotient H \cowith | ||
| func => uqms f N p | ||
| func-ide => uqms f N p N.quotient.ide ==< idp >== uqms f N p (in~ 1) ==< idp >== f ide ==< f.func-ide >== ide `qed | ||
| func-* {x y : N.quotient} => universal-quotient-morphism-multiplicative f N p x y | ||
|
||
|
||
\lemma universal-quotient-property {G H : Group} (f : GroupHom G H) (N : NormalSubGroup G) | ||
(p : N SubGroupPreorder.<= f.Kernel) : (universal-quotient-morph f N p) GroupCat.∘ N.quotient-map = f | ||
=> exts (\lam (x : G) => ((universal-quotient-morph f N p) GroupCat.∘ N.quotient-map) x ==< idp >== | ||
(universal-quotient-morph f N p) (N.quotient-map x) ==< idp >== | ||
(universal-quotient-morph f N p) (in~ x) ==< idp >== f x `qed) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters