Skip to content

Commit

Permalink
Merge pull request #653 from JdeRobot/issue-652
Browse files Browse the repository at this point in the history
Added controller brains for different memory densities and lengths
  • Loading branch information
sergiopaniego authored Jan 9, 2024
2 parents a62544a + a7b015f commit 79b47f2
Show file tree
Hide file tree
Showing 23 changed files with 2,447 additions and 44 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
import csv
import cv2
import math
import numpy as np
import threading
import time
import carla
from os import path
from albumentations import (
Compose, Normalize, RandomRain, RandomBrightness, RandomShadow, RandomSnow, RandomFog, RandomSunFlare
)
from utils.constants import PRETRAINED_MODELS_DIR, ROOT_PATH
from utils.logger import logger
from traceback import print_exc

PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'CARLA/'

from tensorflow.python.framework.errors_impl import NotFoundError
from tensorflow.python.framework.errors_impl import UnimplementedError
import tensorflow as tf


#import os
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)

class Brain:

def __init__(self, sensors, actuators, handler, model, config=None):
self.camera_0 = sensors.get_camera('camera_0')
self.camera_1 = sensors.get_camera('camera_1')
self.camera_2 = sensors.get_camera('camera_2')
self.camera_3 = sensors.get_camera('camera_3')

self.cameras_first_images = []

self.pose = sensors.get_pose3d('pose3d_0')

self.bird_eye_view = sensors.get_bird_eye_view('bird_eye_view_0')

self.motors = actuators.get_motor('motors_0')
self.handler = handler
self.config = config
self.inference_times = []
self.gpu_inference = True if tf.test.gpu_device_name() else False

self.threshold_image = np.zeros((640, 360, 3), np.uint8)
self.color_image = np.zeros((640, 360, 3), np.uint8)

client = carla.Client('localhost', 2000)
client.set_timeout(10.0) # seconds
world = client.get_world()

time.sleep(5)
self.vehicle = world.get_actors().filter('vehicle.*')[0]

if model:
if not path.exists(PRETRAINED_MODELS + model):
logger.info("File " + model + " cannot be found in " + PRETRAINED_MODELS)
logger.info("** Load TF model **")
self.net = tf.keras.models.load_model(PRETRAINED_MODELS + model, compile=False)
logger.info("** Loaded TF model **")
else:
logger.info("** Brain not loaded **")
logger.info("- Models path: " + PRETRAINED_MODELS)
logger.info("- Model: " + str(model))

self.previous_bird_eye_view_image = 0
self.bird_eye_view_images = 0
self.bird_eye_view_unique_images = 0

self.first_acceleration = True


def update_frame(self, frame_id, data):
"""Update the information to be shown in one of the GUI's frames.
Arguments:
frame_id {str} -- Id of the frame that will represent the data
data {*} -- Data to be shown in the frame. Depending on the type of frame (rgbimage, laser, pose3d, etc)
"""
if data.shape[0] != data.shape[1]:
if data.shape[0] > data.shape[1]:
difference = data.shape[0] - data.shape[1]
extra_left, extra_right = int(difference/2), int(difference/2)
extra_top, extra_bottom = 0, 0
else:
difference = data.shape[1] - data.shape[0]
extra_left, extra_right = 0, 0
extra_top, extra_bottom = int(difference/2), int(difference/2)


data = np.pad(data, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0)

self.handler.update_frame(frame_id, data)

def update_pose(self, pose_data):
self.handler.update_pose3d(pose_data)

def execute(self):
image = self.camera_0.getImage().data
image_1 = self.camera_1.getImage().data
image_2 = self.camera_2.getImage().data
image_3 = self.camera_3.getImage().data

bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle)
bird_eye_view_1 = cv2.cvtColor(bird_eye_view_1, cv2.COLOR_BGR2RGB)

if self.cameras_first_images == []:
self.cameras_first_images.append(image)
self.cameras_first_images.append(image_1)
self.cameras_first_images.append(image_2)
self.cameras_first_images.append(image_3)
self.cameras_first_images.append(bird_eye_view_1)

self.cameras_last_images = [
image,
image_1,
image_2,
image_3,
bird_eye_view_1
]

self.update_frame('frame_1', image_1)
self.update_frame('frame_2', image_2)
self.update_frame('frame_3', image_3)

self.update_frame('frame_0', bird_eye_view_1)

self.update_pose(self.pose.getPose3d())

image_shape=(66, 200)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
Normalize()
])
image = AUGMENTATIONS_TEST(image=img_base)
img = image["image"]

self.bird_eye_view_images += 1
if (self.previous_bird_eye_view_image==img).all() == False:
self.bird_eye_view_unique_images += 1
self.previous_bird_eye_view_image = img

img = np.expand_dims(img, axis=0)
start_time = time.time()
try:
prediction = self.net.predict(img, verbose=0)
self.inference_times.append(time.time() - start_time)
throttle = prediction[0][0]
steer = prediction[0][1] * (1 - (-1)) + (-1)
break_command = prediction[0][2]

speed = self.vehicle.get_velocity()
vehicle_speed = 3.6 * math.sqrt(speed.x**2 + speed.y**2 + speed.z**2)

if vehicle_speed < 50 and self.first_acceleration:
self.motors.sendThrottle(1.0)
self.motors.sendSteer(0.0)
self.motors.sendBrake(0)
else:
self.first_acceleration = False
self.motors.sendThrottle(throttle)
self.motors.sendSteer(steer)
self.motors.sendBrake(break_command)
except NotFoundError as ex:
logger.info('Error inside brain: NotFoundError!')
logger.warning(type(ex).__name__)
print_exc()
raise Exception(ex)
except UnimplementedError as ex:
logger.info('Error inside brain: UnimplementedError!')
logger.warning(type(ex).__name__)
print_exc()
raise Exception(ex)
except Exception as ex:
logger.info('Error inside brain: Exception!')
logger.warning(type(ex).__name__)
print_exc()
raise Exception(ex)





Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ def execute(self):

self.update_pose(self.pose.getPose3d())

image_shape=(50, 150)
image_shape=(66, 200)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -131,11 +131,10 @@ def execute(self):

self.update_pose(self.pose.getPose3d())

image_shape=(50, 150)
image_shape=(66, 200)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
#ChannelDropout(p=1.0),
Normalize()
])
image = AUGMENTATIONS_TEST(image=img_base)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ def execute(self):
]

AUGMENTATIONS_TEST = Compose([
GridDropout(p=1.0, ratio=0.9)
GridDropout(p=1.0)
])

bird_eye_view_1 = AUGMENTATIONS_TEST(image=bird_eye_view_1)
Expand All @@ -139,7 +139,7 @@ def execute(self):

self.update_pose(self.pose.getPose3d())

image_shape=(50, 150)
image_shape=(66, 200)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ def execute(self):

self.update_pose(self.pose.getPose3d())

image_shape=(50, 150)
image_shape=(66, 200)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ def execute(self):

self.update_pose(self.pose.getPose3d())

image_shape=(50, 150)
image_shape=(66, 200)
img_base = cv2.resize(bird_eye_view_1, image_shape)

AUGMENTATIONS_TEST = Compose([
Expand All @@ -147,7 +147,7 @@ def execute(self):
self.bird_eye_view_unique_images += 1
self.previous_bird_eye_view_image = img

velocity_dim = np.full((150, 50), self.previous_speed/30)
velocity_dim = np.full((200, 66), self.previous_speed/30)
new_img_vel = np.dstack((img, velocity_dim))
img = new_img_vel

Expand Down
Loading

0 comments on commit 79b47f2

Please sign in to comment.