forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Kernel][Triton] Add Triton implementation for scaled_mm_triton to su…
…pport fp8 and int8 SmoothQuant, symmetric case (vllm-project#9857) Signed-off-by: Randall Smith <[email protected]> Signed-off-by: Loc Huynh <[email protected]>
- Loading branch information
Showing
3 changed files
with
299 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
"""Tests for the triton_scaled_mm kernel | ||
Run `pytest tests/kernels/test_triton_scaled_mm.py`. | ||
""" | ||
import importlib | ||
from typing import Optional, Type | ||
|
||
import pytest | ||
import torch | ||
|
||
from vllm.platforms import current_platform | ||
|
||
device = "cuda" | ||
|
||
|
||
def scaled_mm_torch(a: torch.Tensor, | ||
b: torch.Tensor, | ||
scale_a: torch.Tensor, | ||
scale_b: torch.Tensor, | ||
out_dtype: Type[torch.dtype], | ||
bias: Optional[torch.Tensor] = None) -> torch.Tensor: | ||
out = torch.mm(a.to(torch.float32), b.to(torch.float32)) | ||
out = scale_a * out | ||
out = scale_b.T * out | ||
out = out.to(out_dtype) | ||
if bias is not None: | ||
out = out + bias | ||
|
||
return out | ||
|
||
|
||
def get_8bit_types(): | ||
types = [torch.int8] | ||
supports_fp8 = current_platform.has_device_capability(89) | ||
if current_platform.is_rocm() and supports_fp8: | ||
types.append(torch.float8_e4m3fnuz) | ||
elif current_platform.is_cuda() and supports_fp8: | ||
types.append(torch.float8_e4m3fn) | ||
return types | ||
|
||
|
||
@pytest.mark.parametrize("M", [1, 33, 64, 512]) | ||
@pytest.mark.parametrize("N", [256, 971, 20486]) | ||
@pytest.mark.parametrize("K", [128, 496, 1024]) | ||
@pytest.mark.parametrize("out_dtype", [torch.float16, torch.bfloat16]) | ||
@pytest.mark.parametrize("in_dtype", get_8bit_types()) | ||
@pytest.mark.parametrize("use_scalar_scale_a", [True, False]) | ||
@pytest.mark.parametrize("use_scalar_scale_b", [True, False]) | ||
@pytest.mark.parametrize("use_bias", [True, False]) | ||
def test_scaled_mm(M, N, K, in_dtype, out_dtype, use_scalar_scale_a, | ||
use_scalar_scale_b, use_bias): | ||
is_floating_point_type = lambda t: torch.tensor([1, 1], dtype=t | ||
).is_floating_point() | ||
|
||
current_platform.seed_everything(0) | ||
|
||
# NOTE: There are cases, where if the matrix is large enough, an output | ||
# like 65504.4 can be produced, and can easily turn into inf when | ||
# multiplied when using float16/bfloat16. This means one function, e.g., | ||
# testing function, and another function, e.g. golden function, can | ||
# produce a non-inf value while the other produces an inf value, and | ||
# will cause assert_close/allclose to fail, even though if overflow | ||
# wouldn't have occurred, the values would have been "close." | ||
# | ||
# So, the values here are kept small enough to avoid this situation. | ||
if is_floating_point_type(in_dtype): | ||
a = (0.25 * torch.rand( | ||
(M, K), dtype=torch.float32, device=device)).to(in_dtype) | ||
b = (0.25 * torch.rand( | ||
(K, N), dtype=torch.float32, device=device)).to(in_dtype) | ||
else: | ||
a = torch.randint(-32, 32, (M, K), dtype=in_dtype, device=device) | ||
b = torch.randint(-32, 32, (K, N), dtype=in_dtype, device=device) | ||
|
||
if use_scalar_scale_a: | ||
scale_a = torch.rand((1, 1), device=device) | ||
else: | ||
scale_a = 0.25 * torch.rand((M, 1), device=device) | ||
|
||
if use_scalar_scale_b: | ||
scale_b = torch.rand((1, 1), device=device) | ||
else: | ||
scale_b = 0.25 * torch.rand((N, 1), device=device) | ||
|
||
bias = None | ||
if use_bias: | ||
bias = torch.rand((N, ), device=device, dtype=out_dtype) | ||
|
||
triton_scaled_mm_module = importlib.import_module( | ||
"vllm.model_executor.layers.quantization.compressed_tensors." | ||
"triton_scaled_mm") | ||
triton_scaled_mm = triton_scaled_mm_module.triton_scaled_mm | ||
|
||
c_check = triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias) | ||
|
||
a_cpu = a.cpu() | ||
b_cpu = b.cpu() | ||
scale_a_cpu = scale_a.cpu() | ||
scale_b_cpu = scale_b.cpu() | ||
bias_cpu = None if bias is None else bias.cpu() | ||
|
||
c_actual = scaled_mm_torch(a_cpu, b_cpu, scale_a_cpu, scale_b_cpu, | ||
out_dtype, bias_cpu) | ||
|
||
c_check_cpu = c_check.cpu() | ||
torch.testing.assert_close(c_check_cpu, c_actual, rtol=1e-1, atol=1e-1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
184 changes: 184 additions & 0 deletions
184
vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
from typing import Optional, Type | ||
|
||
import torch | ||
import triton | ||
import triton.language as tl | ||
|
||
|
||
def is_weak_contiguous(x: torch.Tensor): | ||
strides = x.stride() | ||
sizes = x.shape | ||
is_not_transpose = strides[0] == 1 and (strides[1] >= max(1, sizes[0])) | ||
is_transpose = strides[1] == 1 and (strides[0] >= max(1, sizes[1])) | ||
return is_transpose or is_not_transpose | ||
|
||
|
||
@triton.jit | ||
def scaled_mm_kernel(a_ptr, b_ptr, scale_a_ptr, scale_b_ptr, c_ptr, bias_ptr, | ||
M, N, K, stride_am, stride_ak, stride_bk, stride_bn, | ||
stride_cm, stride_cn, ACCUMULATOR_DTYPE: tl.constexpr, | ||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, | ||
BLOCK_SIZE_K: tl.constexpr, | ||
BLOCK_SIZE_SCALE_A: tl.constexpr, | ||
BLOCK_SIZE_SCALE_B: tl.constexpr): | ||
pid = tl.program_id(axis=0) | ||
|
||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) | ||
|
||
pid_m = pid // num_pid_n | ||
pid_n = pid % num_pid_n | ||
|
||
accumulator_dtype = ACCUMULATOR_DTYPE | ||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), | ||
dtype=accumulator_dtype) | ||
|
||
# NOTE: Some tensor inputs are so large, they will cause int32 overflow | ||
# so it is necessary to use tl.int64 for all the offsets, else SEGV will | ||
# eventually occur. | ||
|
||
# Offsets and masks. | ||
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64) | ||
masks_am = offsets_am < M | ||
|
||
offsets_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64) | ||
masks_bn = offsets_bn < N | ||
|
||
offsets_k = tl.arange(0, BLOCK_SIZE_K).to(tl.int64) | ||
offsets_a = (stride_am * offsets_am[:, None] + | ||
stride_ak * offsets_k[None, :]) | ||
offsets_b = (stride_bk * offsets_k[:, None] + | ||
stride_bn * offsets_bn[None, :]) | ||
|
||
# NOTE: BLOCK_SIZE_SCALE_A could be 1 or BLOCK_SIZE_M, so need to create | ||
# appropriate offsets and masks for each case. Same goes for | ||
# BLOCK_SIZE_SCALE_B. | ||
offsets_scale_am = (tl.arange(0, BLOCK_SIZE_SCALE_A) + | ||
(BLOCK_SIZE_SCALE_A > 1) * pid_m * BLOCK_SIZE_M) | ||
masks_scale_am = offsets_scale_am < M | ||
|
||
offsets_scale_bn = (tl.arange(0, BLOCK_SIZE_SCALE_B) + | ||
(BLOCK_SIZE_SCALE_B > 1) * pid_n * BLOCK_SIZE_N) | ||
masks_scale_bn = offsets_scale_bn < N | ||
|
||
a_ptrs = a_ptr + offsets_a | ||
b_ptrs = b_ptr + offsets_b | ||
|
||
scale_a_ptrs = scale_a_ptr + offsets_scale_am | ||
scale_b_ptrs = scale_b_ptr + offsets_scale_bn | ||
|
||
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): | ||
masks_k = offsets_k < K | ||
masks_a = masks_am[:, None] & masks_k[None, :] | ||
a = tl.load(a_ptrs, mask=masks_a) | ||
|
||
masks_b = masks_k[:, None] & masks_bn[None, :] | ||
b = tl.load(b_ptrs, mask=masks_b) | ||
|
||
# Accumulate results. | ||
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype) | ||
|
||
offsets_k += BLOCK_SIZE_K | ||
a_ptrs += BLOCK_SIZE_K * stride_ak | ||
b_ptrs += BLOCK_SIZE_K * stride_bk | ||
|
||
# Apply scale at end. | ||
masks_scale_a = masks_scale_am[:, None] & (tl.arange(0, 1) < 1)[:, None] | ||
scale_a = tl.load(scale_a_ptrs[:, None], masks_scale_a) | ||
# Need to broadcast to the appropriate size, if scale_a is already | ||
# (BLOCK_SIZE_M, 1) then it will broadcast to its own shape. Same goes | ||
# for scale_b below. | ||
scale_a = scale_a.broadcast_to((BLOCK_SIZE_M, 1)) | ||
accumulator = scale_a * accumulator.to(tl.float32) | ||
|
||
masks_scale_b = masks_scale_bn[:, None] & (tl.arange(0, 1) < 1)[None, :] | ||
scale_b = tl.load(scale_b_ptrs[:, None], masks_scale_b) | ||
scale_b = scale_b.broadcast_to((BLOCK_SIZE_N, 1)) | ||
accumulator = scale_b.T * accumulator.to(tl.float32) | ||
|
||
# Convert to output format. | ||
c = accumulator.to(c_ptr.type.element_ty) | ||
|
||
# Add bias, it's already in output format, so add it after conversion. | ||
if bias_ptr: | ||
offsets_bias = offsets_bn | ||
bias_ptrs = bias_ptr + offsets_bias | ||
bias_mask = offsets_bias < N | ||
bias = tl.load(bias_ptrs, bias_mask) | ||
c += bias | ||
|
||
# Save output | ||
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M).to(tl.int64) | ||
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N).to(tl.int64) | ||
offs_cm = offs_cm.to(tl.int64) | ||
offs_cn = offs_cn.to(tl.int64) | ||
c_ptrs = (c_ptr + stride_cm * offs_cm[:, None] + | ||
stride_cn * offs_cn[None, :]) | ||
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) | ||
|
||
tl.store(c_ptrs, c, mask=c_mask) | ||
|
||
|
||
# input - [M, K] | ||
# weight - [K, N] | ||
def triton_scaled_mm(input: torch.Tensor, | ||
weight: torch.Tensor, | ||
scale_a: torch.Tensor, | ||
scale_b: torch.Tensor, | ||
out_dtype: Type[torch.dtype], | ||
bias: Optional[torch.Tensor] = None, | ||
block_size_m: int = 32, | ||
block_size_n: int = 32, | ||
block_size_k: int = 32) -> torch.Tensor: | ||
M, K = input.shape | ||
N = weight.shape[1] | ||
|
||
assert N > 0 and K > 0 and M > 0 | ||
assert weight.shape[0] == K | ||
assert input.dtype == weight.dtype | ||
assert scale_a.dtype == scale_b.dtype and scale_a.is_floating_point() | ||
assert scale_a.shape == torch.Size([1, 1]) or scale_a.shape == torch.Size( | ||
[M, 1]) | ||
assert scale_b.shape == torch.Size([1, 1]) or scale_b.shape == torch.Size( | ||
[N, 1]) | ||
assert out_dtype.is_floating_point | ||
assert bias is None or bias.is_floating_point() | ||
assert is_weak_contiguous(input) | ||
assert is_weak_contiguous(weight) | ||
|
||
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv( | ||
N, META['BLOCK_SIZE_N']), ) | ||
|
||
result = torch.empty((M, N), dtype=out_dtype, device=input.device) | ||
|
||
has_scalar = lambda x: x.shape[0] == 1 and x.shape[1] == 1 | ||
|
||
block_size_sa = 1 if has_scalar(scale_a) else block_size_m | ||
block_size_sb = 1 if has_scalar(scale_b) else block_size_n | ||
|
||
accumulator_dtype = tl.float32 if input.is_floating_point() else tl.int32 | ||
|
||
# A = input, B = weight, C = result | ||
# A = M x K, B = K x N, C = M x N | ||
scaled_mm_kernel[grid](input, | ||
weight, | ||
scale_a, | ||
scale_b, | ||
result, | ||
bias, | ||
M, | ||
N, | ||
K, | ||
input.stride(0), | ||
input.stride(1), | ||
weight.stride(0), | ||
weight.stride(1), | ||
result.stride(0), | ||
result.stride(1), | ||
accumulator_dtype, | ||
BLOCK_SIZE_M=block_size_m, | ||
BLOCK_SIZE_N=block_size_n, | ||
BLOCK_SIZE_K=block_size_k, | ||
BLOCK_SIZE_SCALE_A=block_size_sa, | ||
BLOCK_SIZE_SCALE_B=block_size_sb) | ||
|
||
return result.to(out_dtype) |