Skip to content

Commit

Permalink
Merge pull request #39 from IntelPython/docs-tweaks
Browse files Browse the repository at this point in the history
Docs tweaks
  • Loading branch information
oleksandr-pavlyk authored Feb 27, 2024
2 parents b2be806 + ab6b24e commit 439ae91
Show file tree
Hide file tree
Showing 15 changed files with 62 additions and 59 deletions.
6 changes: 3 additions & 3 deletions docs/source/how_to.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,11 @@ How-to Guides
How to save and resume long computation
---------------------------------------

:class:`RandomState` is pickleable, and pickling allows to save and restore
the internal state of the quasi-random number generators.
:class:`RandomState` is pickleable. Pickling allows to save and restore
the internal state of the pseudorandom number generators.

.. code-block:: python
:caption: Saving state of quasi-random basic random number generators
:caption: Saving state of pseudorandom basic random number generators
import numpy as np
import mkl_random
Expand Down
2 changes: 1 addition & 1 deletion docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ Random sampling powered by Intel(R) Math Kernel Library

:mod:`mkl_random` is Python package exposing pseudo-random and non-deterministic random
number generators with continuous and discrete distribution available in
Intel(R) Math Kernel Library (MKL).
Intel(R) oneAPI Math Kernel Library (`oneMKL <https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html>`_).

.. grid:: 2
:gutter: 3
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/ars5.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
ARS5 brng
=========

The ARS5 counter-based pseudorandom number generator based on AES encryption algorithm can be
The ARS5 counter-based pseudo-random number generator based on AES encryption algorithm can be
initialized with either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for ARS5 basic random number generator with scalar seed
:caption: Construction for ARS5 basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="ars5")
Expand All @@ -17,7 +17,7 @@ initialized with either an integral seed, a list of integral seeds, or automatic
esample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for ARS5 basic random number generator with vector seed
:caption: Construction for ARS5 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="ars5")
Expand All @@ -29,7 +29,7 @@ initialized with either an integral seed, a list of integral seeds, or automatic
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for ARS5 basic random number generator automatic seed
:caption: Construction for ARS5 basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="ars5")
Expand Down
22 changes: 11 additions & 11 deletions docs/source/reference/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,17 @@ The basic random number generator is chosen by specifying :code:`brng` keyword a

The list of supported basic random number generators is as follows (also see `oneMKL Engines <oneMKLBRNG_>`_):

* :code:`'MT19937'` - the Mersenne Twister pseudo-random number generator (default), :doc:`example <mt19937>`
* :code:`'SFMT19937'` - the SIMD-oriented Mersenne Twister pseudo-random number generator, :doc:`example <sfmt19937>`
* :code:`'MT2203'` - the set of 6024 Mersenne Twister pseudorandom number generators, :doc:`example <mt2203>`
* :code:`'R250'` - the 32-bit generalized feedback shift register pseudorandom number generator GFSR(250,103), :doc:`example <r250>`
* :code:`'WH'` - the set of 273 Wichmann-Hill’s combined multiplicative congruential generators, :doc:`example <wichmann_hill>`
* :code:`'MCG31'` - the 31-bit multiplicative congruential pseudorandom number generator, :doc:`example <mcg31>`
* :code:`'MCG59'` - the 59-bit multiplicative congruential pseudorandom number generator, :doc:`example <mcg59>`
* :code:`'MRG32K3A'` - the combined multiple recursive pseudorandom number generator MRG32k3a, :doc:`example <mrg32k3a>`
* :code:`'PHILOX4X32X10'` - the Philox4x32x10 counter-based pseudorandom number generator, :doc:`example <philox4x32x10>`
* :code:`'NONDETERM'` - the generator with non-deterministic source of randomness (for example, a hardware device), :doc:`example <nondeterministic>`
* :code:`'ARS5'` - the ARS5 counter-based pseudorandom number generator based on AES encryption algorithm, :doc:`example <ars5>`
* :ref:`'MT19937' <mt19937_brng>` - the Mersenne Twister pseudo-random number generator (default)
* :ref:`'SFMT19937' <sfmt19937_brng>` - the SIMD-oriented Mersenne Twister pseudo-random number generator
* :ref:`'MT2203' <mt2203_brng>` - the set of 6024 Mersenne Twister pseudo-random number generators
* :ref:`'R250' <r250_brng>` - the 32-bit generalized feedback shift register pseudo-random number generator GFSR(250,103)
* :ref:`'WH' <wh_brng>` - the set of 273 Wichmann-Hill’s combined multiplicative congruential pseudo-random number generators
* :ref:`'MCG31' <mcg31m1_brng>` - the 31-bit multiplicative congruential pseudo-random number generator
* :ref:`'MCG59' <mcg59_brng>` - the 59-bit multiplicative congruential pseudo-random number generator
* :ref:`'MRG32K3A' <mrg32k3a_brng>` - the combined multiple recursive pseudo-random number generator MRG32k3a
* :ref:`'PHILOX4X32X10' <philox4x32x10_brng>` - the Philox4x32x10 counter-based pseudo-random number generator
* :ref:`'NONDETERM' <nondeterm_brng>` - the generator with non-deterministic source of randomness (for example, a hardware device)
* :ref:`'ARS5' <ars5_brng>` - the ARS5 counter-based pseudo-random number generator based on AES encryption algorithm

.. _oneMKLBRNG: https://spec.oneapi.io/versions/1.0-rev-2/elements/oneMKL/source/domains/rng/engines-basic-random-number-generators.html

Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/mcg31.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
MCG31 brng
==========

The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 2**31 -1) can be
The 31-bit multiplicative congruential pseudo-random number generator :math:`mcg(1132489760, 2^{31} -1)` can be
initialized with either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for MCG31 basic random number generator with scalar seed
:caption: Construction for MCG31 basic random pseudo-number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="MCG31")
Expand All @@ -17,7 +17,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
esample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for MCG31 basic random number generator with vector seed
:caption: Construction for MCG31 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="MCG31")
Expand All @@ -29,7 +29,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for MCG31 basic random number generator automatic seed
:caption: Construction for MCG31 basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="MCG31")
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/mcg59.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
MCG59 brng
==========

The 59-bit multiplicative congruential pseudorandom number generator can be
The 59-bit multiplicative congruential pseudo-random number generator can be
initialized with either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for MCG31 basic random number generator with scalar seed
:caption: Construction for MCG31 basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="MCG59")
Expand All @@ -17,7 +17,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
esample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for MCG31 basic random number generator with vector seed
:caption: Construction for MCG31 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="MCG59")
Expand All @@ -29,7 +29,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for MCG31 basic random number generator automatic seed
:caption: Construction for MCG31 basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="MCG59")
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/mrg32k3a.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
MRG32k3a brng
=============

The combined multiple recursive pseudorandom number generator MRG32k3a can be
The combined multiple recursive pseudo-random number generator MRG32k3a can be
initialized with either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for MRG32k3a basic random number generator with scalar seed
:caption: Construction for MRG32k3a basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="MRG32k3a")
Expand All @@ -17,7 +17,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
esample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for MRG32k3a basic random number generator with vector seed
:caption: Construction for MRG32k3a basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="MRG32k3a")
Expand All @@ -29,7 +29,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for MRG32k3a basic random number generator automatic seed
:caption: Construction for MRG32k3a basic psuedo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="MRG32k3a")
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/mt19937.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
MT19937 brng
============

The Mersenne Twister random number generator can be initialized with either an integral seed,
The Mersenne Twister pseudo-random number generator can be initialized with either an integral seed,
a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for MT19937 basic random number generator with scalar seed
:caption: Construction for MT19937 basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="MT19937")
Expand All @@ -16,7 +16,7 @@ a list of integral seeds, or automatically.
usample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for MT19937 basic random number generator with vector seed
:caption: Construction for MT19937 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="MT19937")
Expand All @@ -27,7 +27,7 @@ a list of integral seeds, or automatically.
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for MT19937 basic random number generator automatic seed
:caption: Construction for MT19937 basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="MT19937")
Expand Down
6 changes: 3 additions & 3 deletions docs/source/reference/mt2203.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ An individual member of the set can be addressed by using a tuple to specify the
:code:`brng=("MT2203", set_id)` where :math:`0 \leq \text{set_id} < 6024`.

.. code-block:: python
:caption: Construction for MT2203 basic random number generator with scalar seed
:caption: Construction for MT2203 basic psuedo-random number generator with scalar seed
import mkl_random
seed = 777
Expand All @@ -26,7 +26,7 @@ An individual member of the set can be addressed by using a tuple to specify the
sample = rs5.uniform(0, 1, size=1_000_000)
.. code-block:: python
:caption: Construction for MT2203 basic random number generator with vector seed
:caption: Construction for MT2203 basic psuedo-random number generator with vector seed
import mkl_random
rs = mkl_random.RandomState([1234, 567, 89, 0], brng=("MT2203", 6023))
Expand All @@ -38,7 +38,7 @@ An individual member of the set can be addressed by using a tuple to specify the
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for MT2203 basic random number generator automatic seed
:caption: Construction for MT2203 basic psuedo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="MT2203")
Expand Down
4 changes: 3 additions & 1 deletion docs/source/reference/nondeterministic.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,9 @@ Nondeterm brng
==============

The generator with non-deterministic source of randomness, such as a hardware device, requires no seeding.
This basic random number generator should not be used if reproducibility of stochastic simulation is required.

.. note::
This basic random number generator should not be used if reproducibility of stochastic simulation is required.

.. code-block:: python
:caption: Construction for non-deterministic basic random number generator
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/philox4x32x10.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
Philox4x32x10 brng
==================

The Philox 4x32x10 counter-based pseudorandom number generator can be
The Philox 4x32x10 counter-based pseudo-random number generator can be
initialized with either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for Philox4x32x10 basic random number generator with scalar seed
:caption: Construction for Philox4x32x10 basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="philox4x32x10")
Expand All @@ -17,7 +17,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
esample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for Philox4x32x10 basic random number generator with vector seed
:caption: Construction for Philox4x32x10 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="philox4x32x10")
Expand All @@ -29,7 +29,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for Philox4x32x10 basic random number generator automatic seed
:caption: Construction for Philox4x32x10 basic pseudo random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="philox4x32x10")
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/r250.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
R250 brng
=========

The 32-bit generalized feedback shift register pseudorandom number generator GFSR(250,103) can be
The 32-bit generalized feedback shift register pseudo-random number generator GFSR(250,103) can be
initialized with either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for R250 basic random number generator with scalar seed
:caption: Construction for R250 basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="R250")
Expand All @@ -17,7 +17,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
esample = rs.uniform(0, 1, size=1000)
.. code-block:: python
:caption: Construction for R250 basic random number generator with vector seed
:caption: Construction for R250 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="R250")
Expand All @@ -29,7 +29,7 @@ initialized with either an integral seed, a list of integral seeds, or automati
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for R250 basic random number generator automatic seed
:caption: Construction for R250 basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="R250")
Expand Down
8 changes: 4 additions & 4 deletions docs/source/reference/sfmt19937.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
SFMT19937 brng
==============

The SIMD-oriented Mersenne Twister random number generator can be initialized with
The SIMD-oriented Mersenne Twister pseudo-random number generator can be initialized with
either an integral seed, a list of integral seeds, or automatically.

.. code-block:: python
:caption: Construction for SFMT19937 basic random number generator with scalar seed
:caption: Construction for SFMT19937 basic pseudo-random number generator with scalar seed
import mkl_random
rs = mkl_random.RandomState(1234, brng="SFMT19937")
Expand All @@ -17,7 +17,7 @@ either an integral seed, a list of integral seeds, or automatically.
esample = rs.exponential(2.3, size=1000)
.. code-block:: python
:caption: Construction for SFMT19937 basic random number generator with vector seed
:caption: Construction for SFMT19937 basic pseudo-random number generator with vector seed
import mkl_random
rs_vec = mkl_random.RandomState([1234, 567, 89, 0], brng="SFMT19937")
Expand All @@ -29,7 +29,7 @@ either an integral seed, a list of integral seeds, or automatically.
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for SFMT19937 basic random number generator automatic seed
:caption: Construction for SFMT19937 basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="SFMT19937")
Expand Down
6 changes: 3 additions & 3 deletions docs/source/reference/wichmann_hill.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ An individual member of the set can be addressed by using a tuple to specify the
:code:`brng=("WH", set_id)` where :math:`0 \leq \text{set_id} < 273`.

.. code-block:: python
:caption: Construction for WH basic random number generator with scalar seed
:caption: Construction for WH basic psuedo-random number generator with scalar seed
import mkl_random
seed = 777
Expand All @@ -27,7 +27,7 @@ An individual member of the set can be addressed by using a tuple to specify the
sample = rs5.uniform(0, 1, size=1_000_000)
.. code-block:: python
:caption: Construction for WH basic random number generator with vector seed
:caption: Construction for WH basic pseudo-random number generator with vector seed
import mkl_random
rs = mkl_random.RandomState([1234, 567, 89, 0], brng=("WH", 200))
Expand All @@ -39,7 +39,7 @@ An individual member of the set can be addressed by using a tuple to specify the
When seed is not specified, the generator is initialized using system clock, e.g.:
.. code-block:: python
:caption: Construction for WH basic random number generator automatic seed
:caption: Construction for WH basic pseudo-random number generator with automatic seed
import mkl_random
rs_def = mkl_random.RandomState(brng="WH")
Expand Down
Loading

0 comments on commit 439ae91

Please sign in to comment.