Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding synchronize to cupy implementations #335

Merged
merged 1 commit into from
Feb 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions dpbench/benchmarks/black_scholes/black_scholes_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
#
# SPDX-License-Identifier: Apache-2.0

import cupy as np
import cupy as cp
from scipy.special import erf


Expand All @@ -14,20 +14,22 @@ def black_scholes(nopt, price, strike, t, rate, volatility, call, put):
S = strike
T = t

a = np.log(P / S)
a = cp.log(P / S)
b = T * mr

z = T * sig_sig_two
c = 0.25 * z
y = np.true_divide(1.0, np.sqrt(z))
y = cp.true_divide(1.0, cp.sqrt(z))

w1 = (a - b + c) * y
w2 = (a - b - c) * y

d1 = 0.5 + 0.5 * erf(w1)
d2 = 0.5 + 0.5 * erf(w2)

Se = np.exp(b) * S
Se = cp.exp(b) * S

call[:] = P * d1 - Se * d2
put[:] = call - P + Se

cp.cuda.stream.get_current_stream().synchronize()
16 changes: 10 additions & 6 deletions dpbench/benchmarks/gpairs/gpairs_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,19 +2,23 @@
#
# SPDX-License-Identifier: Apache-2.0

import cupy as np
import cupy as cp


def _gpairs_impl(x1, y1, z1, w1, x2, y2, z2, w2, rbins):
dm = (
np.square(x2 - x1[:, None])
+ np.square(y2 - y1[:, None])
+ np.square(z2 - z1[:, None])
cp.square(x2 - x1[:, None])
+ cp.square(y2 - y1[:, None])
+ cp.square(z2 - z1[:, None])
)
return np.array(
[np.outer(w1, w2)[dm <= rbins[k]].sum() for k in range(len(rbins))]
ret_arr = cp.array(
[cp.outer(w1, w2)[dm <= rbins[k]].sum() for k in range(len(rbins))]
)

cp.cuda.stream.get_current_stream().synchronize()

return ret_arr


def gpairs(nopt, nbins, x1, y1, z1, w1, x2, y2, z2, w2, rbins, results):
results[:] = _gpairs_impl(x1, y1, z1, w1, x2, y2, z2, w2, rbins)
8 changes: 5 additions & 3 deletions dpbench/benchmarks/l2_norm/l2_norm_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,12 @@
#
# SPDX-License-Identifier: Apache-2.0

import cupy as np
import cupy as cp


def l2_norm(a, d):
sq = np.square(a)
sq = cp.square(a)
sum = sq.sum(axis=1)
d[:] = np.sqrt(sum)
d[:] = cp.sqrt(sum)

cp.cuda.stream.get_current_stream().synchronize()
16 changes: 9 additions & 7 deletions dpbench/benchmarks/pairwise_distance/pairwise_distance_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,17 @@
#
# SPDX-License-Identifier: Apache-2.0

import cupy as np
import cupy as cp


def pairwise_distance(X1, X2, D):
x1 = np.sum(np.square(X1), axis=1)
x2 = np.sum(np.square(X2), axis=1)
np.dot(X1, X2.T, D)
x1 = cp.sum(cp.square(X1), axis=1)
x2 = cp.sum(cp.square(X2), axis=1)
cp.dot(X1, X2.T, D)
D *= -2
x3 = x1.reshape(x1.size, 1)
np.add(D, x3, D)
np.add(D, x2, D)
np.sqrt(D, D)
cp.add(D, x3, D)
cp.add(D, x2, D)
cp.sqrt(D, D)

cp.cuda.stream.get_current_stream().synchronize()
13 changes: 8 additions & 5 deletions dpbench/benchmarks/pca/pca_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,21 +2,21 @@
#
# SPDX-License-Identifier: Apache-2.0

import cupy as np
import cupy as cp


def pca(data, dims_rescaled_data=2):
# mean center the data
data -= data.mean(axis=0)

# calculate the covariance matrix
v = np.cov(data, rowvar=False, dtype=data.dtype)
v = cp.cov(data, rowvar=False, dtype=data.dtype)

# calculate eigenvectors & eigenvalues of the covariance matrix
evalues, evectors = np.linalg.eigh(v)
evalues, evectors = cp.linalg.eigh(v)

# sort eigenvalues and eigenvectors in decreasing order
idx = np.argsort(evalues)[::-1]
idx = cp.argsort(evalues)[::-1]
evectors = evectors[:, idx]
evalues = evalues[idx]

Expand All @@ -25,7 +25,10 @@ def pca(data, dims_rescaled_data=2):
evectors = evectors[:, :dims_rescaled_data]

# carry out the transformation on the data using eigenvectors
tdata = np.dot(evectors.T, data.T).T
tdata = cp.dot(evectors.T, data.T).T

cp.cuda.stream.get_current_stream().synchronize()

# return the transformed data, eigenvalues, and eigenvectors

return tdata, evalues, evectors
14 changes: 8 additions & 6 deletions dpbench/benchmarks/rambo/rambo_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,16 +2,18 @@
#
# SPDX-License-Identifier: Apache-2.0

import cupy as np
import cupy as cp


def rambo(nevts, nout, C1, F1, Q1, output):
C = 2.0 * C1 - 1.0
S = np.sqrt(1 - np.square(C))
F = 2.0 * np.pi * F1
Q = -np.log(Q1)
S = cp.sqrt(1 - cp.square(C))
F = 2.0 * cp.pi * F1
Q = -cp.log(Q1)

output[:, :, 0] = Q
output[:, :, 1] = Q * S * np.sin(F)
output[:, :, 2] = Q * S * np.cos(F)
output[:, :, 1] = Q * S * cp.sin(F)
output[:, :, 2] = Q * S * cp.cos(F)
output[:, :, 3] = Q * C

cp.cuda.stream.get_current_stream().synchronize()
Loading