Skip to content

Commit

Permalink
fixing knn sycl for single precision execution
Browse files Browse the repository at this point in the history
  • Loading branch information
adarshyoga committed Feb 21, 2024
1 parent 0d3ac76 commit ba66d79
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 19 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,15 @@
#include <CL/sycl.hpp>
#include <cmath>

struct neighbors
template <typename FpTy, typename IntTy> class theKernel;

template <typename FpTy> struct neighbors
{
double dist;
FpTy dist;
size_t label;
};

template <typename FpTy>
template <typename FpTy, typename IntTy>
sycl::event knn_impl(sycl::queue q,
FpTy *d_train,
size_t *d_train_labels,
Expand All @@ -20,18 +22,18 @@ sycl::event knn_impl(sycl::queue q,
size_t classes_num,
size_t train_size,
size_t test_size,
size_t *d_predictions,
IntTy *d_predictions,
FpTy *d_votes_to_classes,
size_t data_dim)
{
sycl::event partial_hists_ev = q.submit([&](sycl::handler &h) {
h.parallel_for<class theKernel>(
h.parallel_for<theKernel<FpTy, IntTy>>(
sycl::range<1>{test_size}, [=](sycl::id<1> myID) {
size_t i = myID[0];

// here k has to be 5 in order to match with numpy no. of
// neighbors
struct neighbors queue_neighbors[5];
struct neighbors<FpTy> queue_neighbors[5];

// count distances
for (size_t j = 0; j < k; ++j) {
Expand Down Expand Up @@ -102,10 +104,10 @@ sycl::event knn_impl(sycl::queue q,
queue_neighbors[j].label]++;
}

size_t max_ind = 0;
IntTy max_ind = 0;
FpTy max_value = 0.0;

for (size_t j = 0; j < classes_num; ++j) {
for (IntTy j = 0; j < (IntTy)classes_num; ++j) {
if (d_votes_to_classes[i * classes_num + j] > max_value) {
max_value = d_votes_to_classes[i * classes_num + j];
max_ind = j;
Expand Down
32 changes: 21 additions & 11 deletions dpbench/benchmarks/knn/knn_sycl_native_ext/knn_sycl/_knn_sycl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,6 @@
#include "_knn_kernel.hpp"
#include <dpctl4pybind11.hpp>

#include <iostream>

template <typename... Args> bool ensure_compatibility(const Args &...args)
{
std::vector<dpctl::tensor::usm_ndarray> arrays = {args...};
Expand Down Expand Up @@ -41,16 +39,28 @@ void knn_sync(dpctl::tensor::usm_ndarray x_train,
votes_to_classes))
throw std::runtime_error("Input arrays are not acceptable.");

if (x_train.get_typenum() != UAR_DOUBLE) {
throw std::runtime_error("Expected a double precision FP array.");
auto typenum = x_train.get_typenum();
if (typenum == UAR_FLOAT) {
sycl::event res_ev = knn_impl<float, unsigned int>(
x_train.get_queue(), x_train.get_data<float>(),
y_train.get_data<size_t>(), x_test.get_data<float>(), k,
classes_num, train_size, test_size,
predictions.get_data<unsigned int>(),
votes_to_classes.get_data<float>(), data_dim);
res_ev.wait();
}
else if (typenum == UAR_DOUBLE) {
sycl::event res_ev = knn_impl<double, size_t>(
x_train.get_queue(), x_train.get_data<double>(),
y_train.get_data<size_t>(), x_test.get_data<double>(), k,
classes_num, train_size, test_size, predictions.get_data<size_t>(),
votes_to_classes.get_data<double>(), data_dim);
res_ev.wait();
}
else {
throw std::runtime_error(
"Expected a double or single precision FP array.");
}

sycl::event res_ev = knn_impl(
x_train.get_queue(), x_train.get_data<double>(),
y_train.get_data<size_t>(), x_test.get_data<double>(), k, classes_num,
train_size, test_size, predictions.get_data<size_t>(),
votes_to_classes.get_data<double>(), data_dim);
res_ev.wait();
}

PYBIND11_MODULE(_knn_sycl, m)
Expand Down

0 comments on commit ba66d79

Please sign in to comment.