forked from Mhaiyang/CVPR2020_GDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrasp_utils.py
726 lines (633 loc) · 24.1 KB
/
grasp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
import os, sys
import math
import json
import copy
import numpy as np
import trimesh
import cv2
from sklearn.decomposition import PCA
from scipy.spatial import KDTree
import rospy
from ros_utils import ros_qt_to_rt
from tf.transformations import euler_matrix
################ Lifting, Standoff, Movement Utils #####################
def rotate_gripper(group, RT_gripper):
"""
This action takes in the gripper's current pose and slightly rotates
the wrist_roll_joint (last joint in the planning group "arm" for Fetch)
joints[-1] := wrist_roll
joints[-2] := wrist_flex
Input:
- group : planning group "arm" for Fetch robot
- RT_gripper : 4x4 tf for wrist_roll_joint (gripper) w.r.t base_link
"""
group.stop()
joint_goal = group.get_current_joint_values()
joint_goal[-1] += np.radians(30)
# wrist flex joint, index 5, limit -2.1
# joint_goal[-2] = max(joint_goal[-2] + np.radians(30), -2.1)
group.go(joint_goal, wait=True)
group.stop()
rospy.sleep(1)
def move_arm_to_dropoff(group, RT_gripper, x_final=0.45, y_final=0.4):
"""
Move arm to a final dropoff location
Use the x_final and y_final values to plan a cartesian path
"""
# modified fetch.srdf in fetch_moveit_config to have a new group called "wrist" just
# containing the wrist_roll_joint
# print(group.get_current_joint_values())
# group_w = moveit_commander.MoveGroupCommander("wrist")
# group_w.set_max_velocity_scaling_factor(1.0)
# wpose = group_w.get_current_pose().pose
# euler = mat2euler(RT_gripper[:3, :3])
# roll = -euler[0]
# pitch = -euler[1]
# joint_goal = group.get_current_joint_values()
# joint_goal[-1] = roll
# joint_goal[-2] = pitch
# group.go(joint_goal, wait=True)
# group.stop()
def set_pose_posn(wpose, pos):
wpose.position.x = pos[0]
wpose.position.y = pos[1]
wpose.position.z = pos[2]
gripper_posn = RT_gripper[:3, 3]
x_start = gripper_posn[0]
wps = np.linspace(x_start, x_final, 10, endpoint=True)
# first_posn = [gripper_posn[0], y_final, gripper_posn[2]]
# For movement in Z for object dropoff
# final_posn = [x_final, gripper_posn[1], gripper_posn[2] - 0.1]
waypoints = []
wpose = group.get_current_pose().pose
for p in wps:
curr_pos = [p, gripper_posn[1], gripper_posn[2]]
set_pose_posn(wpose, curr_pos)
waypoints.append(copy.deepcopy(wpose))
# set_pose_posn(wpose, final_posn)
# waypoints.append(copy.deepcopy(wpose))
(plan_standoff, fraction) = group.compute_cartesian_path(
waypoints, 0.01, 0.0 # waypoints to follow # eef_step
) # jump_threshold
print(f"Fraction for final dropoff movement: {fraction}")
group.execute(plan_standoff, wait=True)
group.stop()
group.clear_pose_targets()
# group.stop()
joint_goal = group.get_current_joint_values()
RAD_60 = np.radians(60)
joint_goal[0] = RAD_60 if joint_goal[0] >= 0 else -RAD_60
group.go(joint_goal, wait=True)
group.stop()
rospy.sleep(0.5)
def lift_arm_joint(group, confirm=True):
# lift the object
offset = -0.4
pose = group.get_current_joint_values()
# shoulder lift joint
limit = -1.2
if pose[1] + offset < limit:
pose[1] = limit
reach_limit = True
else:
pose[1] += offset
reach_limit = False
# wrist flex joint, index 5, limit -2.1
if reach_limit:
pose[5] = max(pose[5] + offset, -2.1)
group.set_joint_value_target(pose)
plan = group.plan()
if not plan[0]:
print("no plan found in lifting")
group.go(pose, wait=True)
else:
if confirm and user_confirmation("Lift object"):
trajectory = plan[1]
group.execute(trajectory, wait=True)
group.stop()
group.clear_pose_targets()
return
def lift_arm_cartesian(group, RT_gripper, z_offset=0.25):
def set_pose_posn(wpose, pos):
wpose.position.x = pos[0]
wpose.position.y = pos[1]
wpose.position.z = pos[2]
# gpos = RT_gripper[:3, 3]
gpos = RT_gripper[:3, 3]
z_start = gpos[2]
z_final = gpos[2] + z_offset
wps = np.linspace(z_start, z_final, 10, endpoint=True)
# first_posn = [gpos[0], gpos[1], gpos[2] + 0.13]
# For movement in Z for object dropoff
# final_posn = [gpos[0], gpos[1], gpos[2] + 0.25]
waypoints = []
wpose = group.get_current_pose().pose
for z in wps:
curr_pos = [gpos[0], gpos[1], z]
set_pose_posn(wpose, curr_pos)
waypoints.append(copy.deepcopy(wpose))
(plan_standoff, fraction) = group.compute_cartesian_path(
waypoints, 0.01, 0.0 # waypoints to follow # eef_step
) # jump_threshold
print(f"Fraction for lifitng movement: {fraction}")
group.execute(plan_standoff, wait=True)
group.stop()
group.clear_pose_targets()
rospy.sleep(2) #
def lift_arm_pose(group, confirm=True):
# lift the object
offset = 0.2
rospy.loginfo("lift object")
pose_goal = group.get_current_pose().pose
pose_goal.position.z += offset
group.set_pose_target(pose_goal)
plan = group.plan()
trajectory = plan[1]
if not plan[0]:
print("no plan found to lift position")
return
if confirm:
if user_confirmation("Move to lift position"):
pass
else:
sys.exit(1)
group.execute(trajectory, wait=True)
group.stop()
group.clear_pose_targets()
def get_standoff_wp_poses(standoff_dist=0.1, tail_len=10, extra_off=0.01):
"""
For any 6Dof Grasp pose (as 4x4 tf), compute the standoffpose and waypoints along
the direction from standoff to final pose.
Input:
- standoff_dist (float) : how far (in meters) the standoff pose from the final grasp pose
- tail_len (int) : how many waypoints from standoff to final
- extra_off (float) : add an extra waypoint (in meters) from final pose to grasp object more firmly
Returns:
- pose_standoff (np.ndarray) : (tail_len+1, 4, 4) numpy array containing tfs for all waypoints in
gripper frame. So just premultiply with RT_gripper to get in global frame.
"""
offset = -standoff_dist * np.linspace(0, 1, tail_len, endpoint=False)[::-1]
offset = np.append(offset, [extra_off])
tail_len += 1
pose_standoff = np.tile(np.eye(4), (tail_len, 1, 1))
pose_standoff[:, 0, 3] = offset
return pose_standoff
################ Model Free and Point Cloud Utils #####################
def compute_xyz(depth_img, fx, fy, px, py, height, width):
indices = np.indices((height, width), dtype=np.float32).transpose(1, 2, 0)
z_e = depth_img
x_e = (indices[..., 1] - px) * z_e / fx
y_e = (indices[..., 0] - py) * z_e / fy
xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3]
return xyz_img
def get_object_verts(model_path: str, pose):
"""
Loads the points (vertices) for an object model after
applying the given pose
Input:
model_path (str): path to the mesh file for the object
pose (np.ndarray): 4x4 matrix specifying the transform
"""
if not os.path.exists(model_path):
print("[ERROR]: provided model path does not exist!")
return
mesh = trimesh.load(model_path)
mesh.apply_transform(pose)
return mesh.vertices
def model_based_top_down_grasp(points_base):
"""
Gives a top down grasp for an object, assumes a parallel jaw gripper
Input:
points_base: (N,3) array of object points in robot base frame
Returns:
RT_grasp: 4x4 tf giving the transform for the grasp
gripper_width: width for the parallel jaw gripper
"""
gripper_finger_length = 0.062
gripper_tip_to_base_offset = 0.216 # length from finger tip to gripper base
margin_height = 0.005 # margin of error in estimating object's height
margin_width = 0.0015
xy = points_base[:, :2]
center = np.mean(xy, axis=0).reshape((1, 2))
xy_centered = xy - center
pca = PCA(n_components=2)
xy_new = pca.fit_transform(xy_centered)
# we consider 3 grasps in the transformed xy space, each with two end points
upper = np.max(xy_new[:, 1]) + margin_width
lower = np.min(xy_new[:, 1]) - margin_width
gripper_width = upper - lower
half = gripper_width / 2
grasps = np.zeros((6, 2), dtype=np.float32)
# grasp 1
grasps[0, :] = (0, half)
grasps[1, :] = (0, -half)
# grasp 2
grasps[2, :] = (0, upper)
grasps[3, :] = (0, upper - gripper_width)
# grasp 3
grasps[4, :] = (0, lower + gripper_width)
grasps[5, :] = (0, lower)
# transform grasps to the original space
grasps_origin = pca.inverse_transform(grasps)
grasps_origin += center
# use the 1st grasp by default
grasp_center = (grasps_origin[0, :] + grasps_origin[1, :]) / 2
# use the 2nd component to define the grasping angle
component = pca.components_[1, :]
theta = math.atan2(component[0], component[1])
# construct the RT matrix
RT = euler_matrix(0, np.pi / 2, 0) @ euler_matrix(theta, 0, 0)
RT[0, 3] = grasp_center[0]
RT[1, 3] = grasp_center[1]
# deal with noises in z values
z_pts = points_base[:, 2]
print("TOP-DOWN STATS-------------------------")
z_max = np.max(z_pts)
z_min = np.min(z_pts)
z_mean = np.mean(z_pts)
height = z_max - z_min
z_c = z_min + height/2 # middle point (not always equal to mean)
print("H, max, min, mean, center", height, z_max, z_min, z_mean, z_c)
if gripper_finger_length >= height:
# try to go down the entire object and grasp from bottom
z_tip = z_min + 0.003 # 1mm offset
else:
# NOTE: Two cases to consider here
# Case1: H/2 > L ---> ztip = z_c + (H/2 - L) {go a bit more up than center}
# Case2: H/2 < L but H > L ---> ztip = z_c - (L - H/2) {go a bit more down than center} == z_c + (H/2 - L)
z_tip = z_c + (height/2 - gripper_finger_length)
z_tip = max(z_tip, 0.745) # table height check
# if height < 0.04:
# z_tip -= height / 2
# z_tip = min(z_tip, 0.75)
# else:
# z_tip -= 2 * margin_height
print("Z_TIP:", z_tip)
z_gripper_base = z_tip + gripper_tip_to_base_offset
RT[2, 3] = z_gripper_base
return RT, gripper_width
def model_free_top_down_grasp(camera_pose, mask_id, label, xyz_image, percent_filter=0.025):
gripper_finger_length = 0.062
gripper_tip_to_base_offset = 0.216
margin_width = 0.0015
# target mask
mask = (label == mask_id).astype(np.uint8)
# erode mask
kernel = np.ones((3, 3), np.uint8)
mask2 = cv2.erode(mask, kernel)
# process all the points
depth = xyz_image[:, :, 2]
index = depth > 0
points_all = xyz_image[index, :]
labels_all = label[index]
points_base_all = np.matmul(camera_pose[:3, :3], points_all.T) + camera_pose[:3, 3].reshape((3, 1))
points_base_all = points_base_all.T
# create a KD tree for the base points in xy plane
tree = KDTree(points_base_all[:, :2])
# process points for the target
index = (mask2 > 0) & (depth > 0)
points = xyz_image[index, :]
points_base = np.matmul(camera_pose[:3, :3], points.T) + camera_pose[:3, 3].reshape((3, 1))
points_base = points_base.T
# perform pca
xy = points_base[:, :2]
center = np.mean(xy, axis=0).reshape((1, 2))
xy_centered = xy - center
pca = PCA(n_components=2)
xy_new = pca.fit_transform(xy_centered)
# we consider 3 grasps in the transformed xy space, each with two end points
upper = np.max(xy_new[:, 1]) + margin_width
lower = np.min(xy_new[:, 1]) - margin_width
gripper_width = upper - lower
half = gripper_width / 2
grasps = np.zeros((6, 2), dtype=np.float32)
# grasp 1
grasps[0, :] = (0, half)
grasps[1, :] = (0, -half)
# grasp 2
grasps[2, :] = (0, upper)
grasps[3, :] = (0, upper - gripper_width)
# grasp 3
grasps[4, :] = (0, lower + gripper_width)
grasps[5, :] = (0, lower)
if gripper_width > (0.1 - 0.005):
delta = gripper_width - (0.1 - 0.005)
grasps[:, 1] += max(0, (delta/2.1 + 0.005))
# transform grasps to the original space
grasps_origin = pca.inverse_transform(grasps)
grasps_origin += center
# select one of the grasps
end1 = grasps_origin[0, :]
end2 = grasps_origin[1, :]
d, index1 = tree.query(end1)
l1 = labels_all[index1]
d, index2 = tree.query(end2)
l2 = labels_all[index2]
print('end point1 label', l1, 'end point2 label', l2)
# use the 1st grasp by default
grasp_center = (grasps_origin[0, :] + grasps_origin[1, :]) / 2
if l1 > 0 and l2 == 0:
# use the 2nd grasp
grasp_center = (grasps_origin[2, :] + grasps_origin[3, :]) / 2
print('select 2nd top-down grasp')
elif l1 == 0 and l2 > 0:
# use the 3rd grasp
grasp_center = (grasps_origin[4, :] + grasps_origin[5, :]) / 2
print('select 3rd top-down grasp')
# use the 2nd component to define the grasping angle
component = pca.components_[1, :]
theta = math.atan2(component[0], component[1])
'''
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
plt.plot(xy[:, 0], xy[:, 1], 'ro')
plt.plot(grasps_origin[0, 0], grasps_origin[0, 1], 'bo')
plt.plot(grasps_origin[1, 0], grasps_origin[1, 1], 'bo')
plt.plot(grasps_origin[2, 0], grasps_origin[2, 1], 'go')
plt.plot(grasps_origin[3, 0], grasps_origin[3, 1], 'go')
plt.plot(grasps_origin[4, 0], grasps_origin[4, 1], 'yo')
plt.plot(grasps_origin[5, 0], grasps_origin[5, 1], 'yo')
plt.axis('equal')
plt.show()
'''
# construct the RT matrix
RT = euler_matrix(0, np.pi / 2, 0) @ euler_matrix(theta, 0, 0)
RT[0, 3] = grasp_center[0]
RT[1, 3] = grasp_center[1]
# deal with noises in z values
z = np.sort(points_base[:, 2])
num = len(z)
# percent = 0.005
lower = int(num * percent_filter)
upper = int(num * (1 - percent_filter))
z_pts = z[lower:upper]
print("TOP-DOWN STATS-------------------------")
z_max = np.max(z_pts)
z_min = np.min(z_pts)
z_mean = np.mean(z_pts)
height = z_max - z_min
z_c = z_min + height/2 # middle point (not always equal to mean)
print("H, max, min, mean, center", height, z_max, z_min, z_mean, z_c)
if gripper_finger_length >= height:
# try to go down the entire object and grasp from bottom
z_tip = z_min + 0.003 # 1mm offset
else:
# NOTE: Two cases to consider here
# Case1: H/2 > L ---> ztip = z_c + (H/2 - L) {go a bit more up than center}
# Case2: H/2 < L but H > L ---> ztip = z_c - (L - H/2) {go a bit more down than center} == z_c + (H/2 - L)
z_tip = z_c + (height/2 - gripper_finger_length)
z_tip = max(z_tip, 0.745) # table height check
print("Z_TIP:", z_tip)
z_gripper_base = z_tip + gripper_tip_to_base_offset
RT[2, 3] = z_gripper_base
return RT, gripper_width
def compute_oriented_bbox(points_base):
"""
Computes an oriented bounding box for a given set of points
assumes in robot base frame, z axis is upward, x is away from robot
and y is right to left when viewed from robot.
Input:
- points_base (N,3) : object points in robot's base_link frame
Returns:
- Tuple (7, ) :
- [x,y,z] location for object center
- [xlen, ylen, zlen] dimensions of bbox along each axis
- theta : how much to rotate bbox with Z-axis as axis of rotation
"""
xyz_max = (0.95, 0.35, 0.95)
# Clip point cloud based on workspace constraints
index_x = (points_base[:, 0] < xyz_max[0])
index_y = (points_base[:,1] < xyz_max[1])
index_z = (points_base[:,2] < xyz_max[2])
mask = np.logical_and(index_x, index_y, index_z)
# print(f"OLD shape: {points_base.shape}")
# print(f"OLD MAX: {np.max(points_base, axis=0)} | MIN: {np.min(points_base, axis=0)}")
points_base = points_base[mask]
# print(f"NEW MAX: {np.max(points_base, axis=0)} | MIN: {np.min(points_base, axis=0)}")
# print(f"NEW shape: {points_base.shape}\n")
_pts = points_base.copy()
percent_filter = 0.05
for _i in range(3):
# deal with noises in z values
_pts_axis = np.sort(_pts[:, _i])
num = len(_pts_axis)
# percent = 0.005
lower = int(num * percent_filter)
upper = int(num * (1 - percent_filter))
_pts = _pts[lower:upper]
points_base = _pts
height = np.max(points_base[:, 2]) - np.min(points_base[:, 2])
xy = points_base[:, :2]
center = np.mean(xy, axis=0).reshape((1, 2))
xy_centered = xy - center
pca = PCA(n_components=2)
xy_new = pca.fit_transform(xy_centered)
max_coords = np.max(xy_new, axis=0)
min_coords = np.min(xy_new, axis=0)
# 4 corners: (minx, miny), (minx, maxy), (maxx, maxy), (maxx, miny)
# these corners are in pca transformed space
corners = np.zeros((4, 2), dtype=np.float32)
corners[0, :] = (min_coords[0], min_coords[1])
corners[1, :] = (min_coords[0], max_coords[1])
corners[2, :] = (max_coords[0], max_coords[1])
corners[3, :] = (max_coords[0], min_coords[1])
corners_org = pca.inverse_transform(corners)
corners_org += center # get the corners in input pts reference frame
rect_ylen = np.linalg.norm(corners_org[3] - corners_org[2])
rect_xlen = np.linalg.norm(corners_org[3] - corners_org[0])
# use the 2nd component to define the grasping angle
component = pca.components_[1, :]
theta = np.pi - math.atan2(component[0], component[1])
# print(f"HEIGHT: {height}")
# height = min(height, np.max(points_base[:, 2]) - np.mean(points_base[:, 2]))
print(f"HEIGHT: {height}\n")
# return np.mean(points_base, axis=0), rect_xlen, rect_ylen, height, theta
_cent = (np.max(points_base, axis=0) + np.min(points_base, axis=0))/2.0
return _cent, rect_xlen, rect_ylen, height, theta
############### Misc and Grasp File I/O UTILS #####################
def user_confirmation(message):
print(message)
val = input("Proceed? Y/N: ")
if val == "N" or val == "n":
return False
else:
return True
def get_object_name(ycb_id: str):
"""Allowed Subset of YCB Objects
"003" : "003_cracker_box",
"004": "004_sugar_box",
"005": "005_tomato_soup_can",
"006": "006_mustard_bottle",
"007": "007_tuna_fish_can",
"008": "008_pudding_box",
"009": "009_gelatin_box",
"010": "010_potted_meat_can",
"011": "011_banana",
"021": "021_bleach_cleanser",
"024": "024_bowl",
"025": "025_mug",
"035": "035_power_drill",
"037": "037_scissors",
"040": "040_large_marker",
"052": "052_extra_large_clamp",
"""
if ycb_id == "003":
return "003_cracker_box"
elif ycb_id == "004":
return "004_sugar_box"
elif ycb_id == "005":
return "005_tomato_soup_can"
elif ycb_id == "006":
return "006_mustard_bottle"
elif ycb_id == "007":
return "007_tuna_fish_can"
elif ycb_id == "008":
return "008_pudding_box"
elif ycb_id == "009":
return "009_gelatin_box"
elif ycb_id == "010":
return "010_potted_meat_can"
elif ycb_id == "011":
return "011_banana"
elif ycb_id == "021":
return "021_bleach_cleanser"
elif ycb_id == "024":
return "024_bowl"
elif ycb_id == "025":
return "025_mug"
elif ycb_id == "035":
return "035_power_drill"
elif ycb_id == "037":
return "037_scissors"
elif ycb_id == "040":
return "040_large_marker"
elif ycb_id == "052":
return "052_extra_large_clamp"
else:
return None
def parse_grasps(filename):
with open(filename, "r") as f:
data = json.load(f)
grasps = data["grasps"]
n = len(grasps)
poses_grasp = np.zeros((n, 4, 4), dtype=np.float32)
for i in range(n):
pose = grasps[i]["pose"]
rot = pose[3:]
trans = pose[:3]
RT = ros_qt_to_rt(rot, trans)
poses_grasp[i, :, :] = RT
return poses_grasp
def close_grasps(RT_obj, RT_grasps, close_idxs):
# translate all RT graspits grasps using the object mean
# transform grasps to robot base
# n = RT_grasps.shape[0]
n = RT_grasps.shape[0]
RT_grasps_base = np.zeros_like(RT_grasps)
for i in range(n):
RT_g = RT_grasps[i] # RT_grasps[i]
# transform grasp to robot base
RT = RT_obj @ RT_g
RT_grasps_base[i] = RT
print(close_idxs)
RT_grasps_base = RT_grasps_base[close_idxs]
return RT_grasps_base, close_idxs
def sort_grasps(RT_obj, RT_gripper, RT_grasps):
# translate all RT graspits grasps using the object mean
# transform grasps to robot base
n = RT_grasps.shape[0]
RT_grasps_base = np.zeros_like(RT_grasps)
distances = np.zeros((n,), dtype=np.float32)
for i in range(n):
RT_g = RT_grasps[i]
# transform grasp to robot base
RT = RT_obj @ RT_g
RT_grasps_base[i] = RT
d = np.linalg.norm(RT_gripper[:3, 3] - RT[:3, 3])
distances[i] = d
index = np.argsort(distances)
RT_grasps_base = RT_grasps_base[index]
# print("Distances to gripper:", distances)
# print("Index:", index)
return RT_grasps_base, index
def sort_and_filter_grasps(RT_obj, RT_gripper, RT_grasps, table_height: float):
# translate all RT graspits grasps using the object mean
# transform grasps to robot base
n = RT_grasps.shape[0]
# RT_grasps_base = np.zeros_like(RT_grasps)
distances = np.zeros((n,), dtype=np.float32)
RT_grasps_base = []
distances = []
for i in range(n):
RT_g = RT_grasps[i]
# transform grasp to robot base
RT = RT_obj @ RT_g
trans = RT[:3, 3]
if trans[-1] > (table_height + 0.02): # 2cm offset above table surface
RT_grasps_base.append(RT)
d = np.linalg.norm(RT_gripper[:3, 3] - RT[:3, 3])
distances.append(d)
# RT_grasps_base[i] = RT
# d = np.linalg.norm(RT_gripper[:3, 3] - RT[:3, 3])
# distances[i] = d
final_grasp_len = len(RT_grasps_base)
pruned_ratio = (n - final_grasp_len) / n
print(f"Filter ratio: {pruned_ratio}")
if pruned_ratio == 1.0:
print(f"returning all none")
return None, None, None
RT_grasps_base = np.asarray(RT_grasps_base)
distances = np.asarray(distances, dtype=np.float32)
index = np.argsort(distances)
RT_grasps_base = RT_grasps_base[index]
# print("Distances to gripper:", distances)
# print("Index:", index)
return RT_grasps_base, index, pruned_ratio
def model_free_sort_and_filter_grasps(RT_grasps, table_height: float, RT_cam=None):
"""
Model free version. Doesn't actually use the RT_gripper, just filters!
Assumes that the RT_grasps are already in the base frame!
"""
n = len(RT_grasps)
if n == 0:
return None, None, None
RT_grasps_base = []
if RT_cam is not None:
RT_tf = RT_cam
else:
RT_tf = np.eye(4)
for i in range(n):
RT = RT_tf @ RT_grasps[i]
# RT = RT_grasps[i] # RT_obj @ RT_g
trans = RT[:3, 3]
if trans[-1] > (table_height + 0.02): # 2cm offset above table surface
RT_grasps_base.append(RT)
final_grasp_len = len(RT_grasps_base)
pruned_ratio = (n - final_grasp_len) / n
print(f"Filter ratio: {pruned_ratio}")
if pruned_ratio == 1.0:
print(f"returning all none")
return None, None, None
RT_grasps_base = np.asarray(RT_grasps_base)
# We dont sort by distances, so the index is same
return RT_grasps_base, [i for i in range(len(RT_grasps_base))], pruned_ratio
def extract_grasps(graspit_grasps, gripper_name, obj_offset):
# counting
n = 0
index = []
for i in range(len(graspit_grasps)):
if graspit_grasps[i]["gripper"] == gripper_name:
n += 1
index.append(i)
# get grasps
poses_grasp = np.zeros((n, 4, 4), dtype=np.float32)
for i in range(n):
ind = index[i]
pose = graspit_grasps[ind]["pose"]
rot = pose[3:]
trans = pose[:3]
RT = ros_qt_to_rt(rot, trans)
RT_offset = np.eye(4, dtype=np.float32)
RT_offset[:3, 3] = -obj_offset
poses_grasp[i, :, :] = RT_offset @ RT
return poses_grasp