forked from ChanglongJiangGit/A2J-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanchor.py
130 lines (109 loc) · 5.52 KB
/
anchor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from config import cfg
from nets.layer import make_linear_layers
## generate 3D coords of 3D anchors. num is 256*3
def generate_all_anchors_3d():
if cfg.dataset == "InterHand2.6M":
x_center = 7.5
y_center = 7.5
stride = 16
step_h = 16
step_w = 16
d_center = 63.5
stride_d = 64
step_d = 3
elif cfg.dataset == 'nyu':
x_center = 7.5
y_center = 7.5
stride = 16
step_h = 16
step_w = 16
d_center = -75
stride_d = 75
step_d = 3
elif cfg.dataset == 'hands2017':
x_center = 7.5
y_center = 7.5
stride = 16
step_h = 11
step_w = 11
d_center = -75
stride_d = 75
step_d = 3
anchors_h = np.arange(0,step_h) * stride + x_center
anchors_w = np.arange(0,step_w) * stride + y_center
anchors_d = np.arange(0,step_d) * stride_d + d_center
anchors_x, anchors_y, anchors_z = np.meshgrid(anchors_h, anchors_w, anchors_d)
all_anchors = np.vstack((anchors_x.ravel(), anchors_y.ravel(), anchors_z.ravel())).transpose() #256*3
return all_anchors
class generate_keypoints_coord_new(nn.Module):
def __init__(self, num_joints, is_3D=True):
super(generate_keypoints_coord_new, self).__init__()
self.is_3D = is_3D
self.num_joints = num_joints
def forward(self, total_coords, total_weights, total_references):
lvl_num, batch_size, a, _ = total_coords.shape
total_coords = total_coords.reshape(lvl_num, batch_size, a, self.num_joints, -1) ## l,b,a,j,3
weights_softmax = F.softmax(total_weights, dim=2)
weights = torch.unsqueeze(weights_softmax, dim=4).expand(-1,-1,-1,-1, 3) ## l,b,a,j,3
keypoints = torch.unsqueeze(total_references, dim = 3).expand(-1,-1,-1,cfg.keypoint_num,-1) + total_coords
pred_keypoints = (keypoints * weights).sum(2) ## l,b,a,3
anchors = (torch.unsqueeze(total_references, dim = 3) * weights).sum(2)
return pred_keypoints, anchors
class a2jloss_new(nn.Module):
def __init__(self, spatialFactor=0.5, is_3D=True, use_lvl_weights=False):
super(a2jloss_new, self).__init__()
self.is_3D = is_3D
self.spatialFactor = spatialFactor
self.use_lvl_weights = use_lvl_weights
if self.use_lvl_weights is True:
self.lvl_weights = cfg.lvl_weights
def forward(self, total_keypoints_coord, total_anchor, annotations, joint_valid):
lvl_num, batch_size, j, _ = total_keypoints_coord.shape
# total_keypoints_coord ## l,b,j,3
# total_anchor ## l,b,j,3
# annotations ## b,j,3
# joint_valid ## b,j
total_annotations = torch.unsqueeze(annotations,0).expand(lvl_num,-1,-1,-1) ## l,b,j,3
total_joint_valid = joint_valid[None,:,:,None].expand(lvl_num,-1,-1, 3) ## l,b,j,3
## Count the number of valid and set zero items to one
per_batch_valid_num = torch.sum(joint_valid, dim = 1)
per_batch_valid_num = torch.where(
torch.le(per_batch_valid_num, 0.5),
per_batch_valid_num+1,
per_batch_valid_num
)
per_batch_valid_num = torch.unsqueeze(per_batch_valid_num,0).expand(lvl_num,-1) * 3 ## l,b ,*3 indicates how many 3d coordinates are available in l and b
anchor_diff = torch.abs(total_anchor - total_annotations)
anchor_loss = torch.where(
torch.le(anchor_diff, 1),
0.5 * 1 * torch.pow(anchor_diff, 2),
anchor_diff - 0.5 / 1
)
anchor_loss_valid = (anchor_loss * total_joint_valid).reshape(lvl_num, batch_size, -1) ## l,b,j*3
anchor_loss_mean_batch = torch.mean(torch.sum(anchor_loss_valid, 2)/ per_batch_valid_num, 1) ## l,b
regression_diff_xy = torch.abs(total_keypoints_coord[:,:,:,0:2] - total_annotations[:,:,:,0:2])
regression_loss_xy = torch.where(
torch.le(regression_diff_xy, 1),
0.5 * 1 * torch.pow(regression_diff_xy, 2),
regression_diff_xy - 0.5 / 1
)
regression_diff_z = torch.abs(total_keypoints_coord[:,:,:,2] - total_annotations[:,:,:,2])
regression_loss_z = torch.where(
torch.le(regression_diff_z, 3),
0.5 * (1/3) * torch.pow(regression_diff_z, 2),
regression_diff_z - 0.5 / (1/3)
)
regression_loss = torch.cat((regression_loss_xy * self.spatialFactor, regression_loss_z.unsqueeze(3)), dim = 3)
regression_loss_valid = (regression_loss * total_joint_valid).reshape(lvl_num, batch_size, -1) ## l,b,j*3
regression_loss_mean_batch = torch.mean(torch.sum(regression_loss_valid, 2)/ per_batch_valid_num, 1) ## l,b
if self.use_lvl_weights is True:
anchor_loss_output = torch.mean(anchor_loss_mean_batch * torch.tensor(self.lvl_weights).to(anchor_loss_mean_batch.device))
regression_loss_output = torch.mean(regression_loss_mean_batch * torch.tensor(self.lvl_weights).to(regression_loss_mean_batch.device))
else:
anchor_loss_output = torch.mean(anchor_loss_mean_batch)
regression_loss_output = torch.mean(regression_loss_mean_batch)
return anchor_loss_output, regression_loss_output