Skip to content

Commit

Permalink
Update MathematicalFormulation.rst
Browse files Browse the repository at this point in the history
  • Loading branch information
arght committed Oct 25, 2024
1 parent bb68715 commit 934aa1e
Showing 1 changed file with 5 additions and 5 deletions.
10 changes: 5 additions & 5 deletions doc/rst/MathematicalFormulation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -480,7 +480,7 @@ Logical relation between commitment, startup and shutdown status of a committed

:math:`uc^p_{\omega ng} - uc^p_{\omega,n-\nu,g} = su^p_{\omega ng} - sd^p_{\omega ng} \quad \forall p \omega ng`

Logical relation between stable, ramp up, and ramp down states (units with stable time) [p.u.] «``eStableStates``»
Logical relation between stable, ramp up, and ramp down states (generating units with stable time) [p.u.] «``eStableStates``»

:math:`rss^p_{\omega nt} + rsu^p_{\omega nt} + rsd^p_{\omega nt} = uc^p_{\omega nt} \quad \forall p \omega nt`

Expand Down Expand Up @@ -515,15 +515,15 @@ Maximum ramp down and ramp up for the charge of an ESS [p.u.] «``eRampUpCharge`
Detection of ramp up and ramp down state for the second block of a non-renewable (thermal) unit with minimum stable time [p.u.] «``eRampUpState``» «``eRampDwState``».
The parameter :math:`\epsilon` is added to detect if the generator is ramping up/down. It is defined in the code as 1e-5.

:math:`\frac{- p^p_{\omega,n-\nu,t} + p^p_{\omega nt}}{DUR^p_{\omega n} RU_t \epsilon} \leq \frac{rsu^p_{\omega nt}}{\epsilon} - rsd^p_{\omega nt} \quad \forall p \omega nt`
:math:`\frac{- p^p_{\omega,n-\nu,t} + p^p_{\omega nt}}{DUR^p_{\omega n} RU_t \, \epsilon} \leq \frac{rsu^p_{\omega nt}}{\epsilon} - rsd^p_{\omega nt} \quad \forall p \omega nt`

:math:`\frac{ p^p_{\omega,n-\nu,t} - p^p_{\omega nt}}{DUR^p_{\omega n} RD_t \epsilon} \leq \frac{rsd^p_{\omega nt}}{\epsilon} - rsu^p_{\omega nt} \quad \forall p \omega nt`
:math:`\frac{ p^p_{\omega,n-\nu,t} - p^p_{\omega nt}}{DUR^p_{\omega n} RD_t \, \epsilon} \leq \frac{rsd^p_{\omega nt}}{\epsilon} - rsu^p_{\omega nt} \quad \forall p \omega nt`

The model can also consider a dead band, which means that ramps below a certain threshold set by :math:`\epsilon` should not be restricted. In this case, the :math:`\epsilon` is defined in the code as 1e-2.

:math:`\frac{- p^p_{\omega,n-\nu,t} + p^p_{\omega nt}}{DUR^p_{\omega n} RU_t \epsilon} \leq \frac{rsu^p_{\omega nt}}{\epsilon} - rsd^p_{\omega nt} + rss^p_{\omega nt} \quad \forall p \omega nt`
:math:`\frac{- p^p_{\omega,n-\nu,t} + p^p_{\omega nt}}{DUR^p_{\omega n} RU_t \, \epsilon} \leq \frac{rsu^p_{\omega nt}}{\epsilon} - rsd^p_{\omega nt} + rss^p_{\omega nt} \quad \forall p \omega nt`

:math:`\frac{ p^p_{\omega,n-\nu,t} - p^p_{\omega nt}}{DUR^p_{\omega n} RD_t \epsilon} \leq \frac{rsd^p_{\omega nt}}{\epsilon} - rsu^p_{\omega nt} + rss^p_{\omega nt} \quad \forall p \omega nt`
:math:`\frac{ p^p_{\omega,n-\nu,t} - p^p_{\omega nt}}{DUR^p_{\omega n} RD_t \, \epsilon} \leq \frac{rsd^p_{\omega nt}}{\epsilon} - rsu^p_{\omega nt} + rss^p_{\omega nt} \quad \forall p \omega nt`

Minimum up time and down time of thermal unit [p.u.] «``eMinUpTime``» «``eMinDownTime``»

Expand Down

0 comments on commit 934aa1e

Please sign in to comment.