Skip to content

Commit

Permalink
📖 Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
RaulFD-creator authored Nov 11, 2023
1 parent 1dbfaf2 commit 588c9d7
Showing 1 changed file with 5 additions and 5 deletions.
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ AutoPeptideML is an open-source AutoML system for helping scientists without a c

## Contents

<details open><summary><b>Table of Contents</b></summary>
<details open markdown="1"><summary><b>Table of Contents</b></summary>

- [Intallation Guide](#installation)
- [Benchmark Data](#benchmark)
Expand Down Expand Up @@ -124,7 +124,7 @@ Data used to benchmark our approach has been selected from the benchmarks collec

## Documentation <a name="documentation"></a>

<details><summary><b>1. Model builder options</summary></b><a name="builder"></a>
<details markdown="1"><summary><b>1. Model builder options</summary></b><a name="builder"></a>

**Dataset construction**

Expand Down Expand Up @@ -168,7 +168,7 @@ Data used to benchmark our approach has been selected from the benchmarks collec
- `--seed`: Seed for pseudorandom number generators. Controls stochastic processes. (Default: 42)
</details>

<details><summary><b>2. Predict</summary></b><a name="predict"></a>
<details markdown="1"><summary><b>2. Predict</summary></b><a name="predict"></a>

- `dataset`: File with problem peptides in `FASTA` or `CSV` file.
- `--ensemble`: Path to the a file containing a previous AutoPeptideML result.
Expand All @@ -180,7 +180,7 @@ Data used to benchmark our approach has been selected from the benchmarks collec

</details>

<details><summary><b>3. Hyperparameter Optimisation and model selection</summary></b><a name="hpo"></a>
<details markdown="1"><summary><b>3. Hyperparameter Optimisation and model selection</summary></b><a name="hpo"></a>

The experiment configuration is a file in `JSON` format describing the hyperparameter optimisation search space and the composition of the final ensemble. The first level of the file is a dictionary with a single key (`ensemble` or `model_selection` or `model_selection`) and a list of search spaces for the hyperparameter optimisation. For each model within the `ensemble` list, `n` different models will be trained one per cross-validation fold; in the case of `model_selection`, only one of the algorithms will comprise the final ensemble; in the case of `model_selection`, only one of the algorithms will comprise the final ensemble.

Expand All @@ -200,7 +200,7 @@ There is an example available in the [default configuration file](https://github

</details>

<details><summary><b>4. API</summary></b><a name="api"></a>
<details markdown="1"><summary><b>4. API</summary></b><a name="api"></a>

Example notebooks and documentation in how to use the API can be found in the `examples` directory.

Expand Down

0 comments on commit 588c9d7

Please sign in to comment.