-
-
Notifications
You must be signed in to change notification settings - Fork 321
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #746 from AznamirWoW/split_audio
simplified audio split and merge
- Loading branch information
Showing
2 changed files
with
47 additions
and
98 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,95 +1,47 @@ | ||
from pydub.silence import detect_nonsilent | ||
from pydub import AudioSegment | ||
import numpy as np | ||
import re | ||
import os | ||
import librosa | ||
|
||
from rvc.lib.utils import format_title | ||
|
||
|
||
def process_audio(audio_path, sr=44100, silence_thresh=-70, min_silence_len=750): | ||
try: | ||
# Convert min_silence_len from ms to frames | ||
min_silence_frames = int((min_silence_len / 1000) * sr) | ||
|
||
# Detect non-silent parts | ||
intervals = librosa.effects.split( | ||
audio_path, | ||
top_db=-silence_thresh, | ||
frame_length=min_silence_frames, | ||
hop_length=min_silence_frames // 2, | ||
) | ||
|
||
segments = [] | ||
timestamps = [] | ||
|
||
# Add the first silence segment if any | ||
if intervals[0][0] > 0: | ||
segments.append(audio_path[: intervals[0][0]]) | ||
timestamps.append((0, intervals[0][0] / sr)) | ||
|
||
for i, interval in enumerate(intervals): | ||
start, end = interval | ||
chunk = audio_path[start:end] | ||
|
||
segments.append(chunk) | ||
timestamps.append((start / sr, end / sr)) # Convert to seconds | ||
|
||
print(f"Segment {i} created!") | ||
|
||
# Add the next silence segment if any | ||
if i < len(intervals) - 1 and end < intervals[i + 1][0]: | ||
segments.append(audio_path[end : intervals[i + 1][0]]) | ||
timestamps.append((end / sr, intervals[i + 1][0] / sr)) | ||
|
||
# Add the last silence segment if any | ||
if intervals[-1][1] < len(audio_path): | ||
segments.append(audio_path[intervals[-1][1] :]) | ||
timestamps.append((intervals[-1][1] / sr, len(audio_path) / sr)) | ||
|
||
print(f"Total segments created: {len(segments)}") | ||
|
||
return "Finish", segments, timestamps | ||
|
||
except Exception as error: | ||
print(f"An error occurred while splitting the audio: {error}") | ||
return "Error", None, None | ||
|
||
|
||
def merge_audio(segments, timestamps, sample_rate=44100): | ||
try: | ||
audio_segments = [] | ||
last_end_time = 0 | ||
|
||
print("Starting audio merging process") | ||
|
||
for i, (start_time, end_time) in enumerate(timestamps): | ||
silence_duration = max(start_time - last_end_time, 0) | ||
silence = AudioSegment.silent( | ||
duration=silence_duration, frame_rate=sample_rate | ||
) | ||
audio_segments.append(silence) | ||
|
||
segment_audio = AudioSegment( | ||
segments[i].tobytes(), | ||
frame_rate=sample_rate, | ||
sample_width=segments[i].dtype.itemsize, | ||
channels=1 if segments[i].ndim == 1 else segments[i].shape[1], | ||
) | ||
audio_segments.append(segment_audio) | ||
|
||
last_end_time = end_time | ||
|
||
print(f"Processed segment {i+1}/{len(timestamps)}") | ||
|
||
merged_audio = sum(audio_segments) | ||
|
||
merged_audio_np = np.array(merged_audio.get_array_of_samples()) | ||
|
||
print("Audio merging completed successfully") | ||
return sample_rate, merged_audio_np | ||
|
||
except Exception as error: | ||
print(f"An error occurred during audio merging: {error}") | ||
return None, None | ||
def process_audio(audio, sr=16000, silence_thresh=-60, min_silence_len=250): | ||
""" | ||
Splits an audio signal into segments using a fixed frame size and hop size. | ||
Parameters: | ||
- audio (np.ndarray): The audio signal to split. | ||
- sr (int): The sample rate of the input audio (default is 16000). | ||
- silence_thresh (int): Silence threshold (default =-60dB) | ||
- min_silence_len (int): Minimum silence duration (default 250ms). | ||
Returns: | ||
- list of np.ndarray: A list of audio segments. | ||
- np.ndarray: The intervals where the audio was split. | ||
""" | ||
frame_length = int(min_silence_len / 1000 * sr) | ||
hop_length = frame_length // 2 | ||
intervals = librosa.effects.split(audio, top_db=-silence_thresh, frame_length=frame_length, hop_length=hop_length) | ||
audio_segments = [audio[start:end] for start, end in intervals] | ||
|
||
return audio_segments, intervals | ||
|
||
def merge_audio(audio_segments, intervals, sr_orig, sr_new): | ||
""" | ||
Merges audio segments back into a single audio signal, filling gaps with silence. | ||
Parameters: | ||
- audio_segments (list of np.ndarray): The non-silent audio segments. | ||
- intervals (np.ndarray): The intervals used for splitting the original audio. | ||
- sr_orig (int): The sample rate of the original audio | ||
- sr_new (int): The sample rate of the model | ||
Returns: | ||
- np.ndarray: The merged audio signal with silent gaps restored. | ||
""" | ||
sr_ratio = sr_new / sr_orig if sr_new > sr_orig else 1.0 | ||
|
||
merged_audio = audio_segments[0] | ||
|
||
for i in range(1, len(intervals)): | ||
silence_duration = int((intervals[i][0] - intervals[i-1][1]) * sr_ratio) | ||
silence = np.zeros(silence_duration, dtype=audio_segments[0].dtype) | ||
merged_audio = np.concatenate((merged_audio, silence, audio_segments[i])) | ||
|
||
return merged_audio |