Skip to content

Commit

Permalink
refine docs
Browse files Browse the repository at this point in the history
  • Loading branch information
HydrogenSulfate committed Nov 27, 2023
1 parent 03c1318 commit 786eda0
Showing 1 changed file with 17 additions and 14 deletions.
31 changes: 17 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,10 +51,7 @@ python ./custom_op_test.py

除少量 `deprecated` 相关的警告外,如果输出全部都是 True,则说明自定义算子安装成功并且运行正常。

### 2.1 训练

> [!NOTE]
> 暂时只支持 water_se_e2_a 案例的训练
### 2.2 训练

``` sh
# 进入案例目录
Expand All @@ -63,7 +60,7 @@ cd examples/water/se_e2_a
dp train ./input.json
```

### 2.2 评估
### 2.3 评估

``` sh
# 进入案例目录
Expand All @@ -74,7 +71,7 @@ WEIGHT_PATH="path/to/your_model.pdparams"
dp test -m ${WEIGHT_PATH} -s ../data/data_3/ -n 30
```

### 2.3 导出静态图模型
### 2.4 导出静态图模型

``` sh
# 进入案例目录
Expand All @@ -87,15 +84,15 @@ DUMP_PATH="path/to/your_dump"
dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
```

### 2.4 在 LAMMPS(GPU) 中推理
### 2.5 在 LAMMPS(GPU) 中推理

1. 修改 `examples/water/lmp/in.lammps` 文件,将 `pair_style deepmd` 后面的路径改为 **2.3 导出静态图模型** 这一章节内设置好的 DUMP_PATH 的值

``` suggestion
pair_style deepmd "path/to/your_dump"
```

2. 编译 Paddle,得到未裁剪算子的 Paddle 推理库(LAMMPS 推理涉及到 `xxx_grad` 反向算子,因而需要使用未裁剪的 Paddle 推理库)
2. 编译 Paddle,得到未裁剪算子的 Paddle 推理库(LAMMPS 推理涉及到 `xxx_grad` 反向算子,因而在此需要手动编译 Paddle,得到未裁剪的 Paddle 推理库)

``` sh
git clone https://github.com/PaddlePaddle/Paddle.git -b develop
Expand All @@ -105,10 +102,12 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
# 推荐使用 Anaconda 安装 python3.9 环境,并在该环境下执行编译命令
cmake .. -DPY_VERSION=3.9 -DWITH_GPU=ON -WITH_DISTRIBUTE=ON -DWITH_TESTING=ON -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
pip install python/dist/paddlepaddle_gpu-0.0.0-cp39-cp39-linux_x86_64.whl
# 编译完成后,确认 paddle_inference_install_dir 推理库是否存在
ls build/paddle_inference_install_dir
```

3. 安装 LAMMPS 并运行推理
3. Paddle 推理库和 LAMMPS 联合编译安装,并运行推理

``` sh
# 下载并解压 lammps 源码
Expand Down Expand Up @@ -166,7 +165,9 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
lmp_serial -in in.lammps
```

4. 直接运行推理
4. [可选]直接运行推理

若已完成 **3. Paddle 推理库和 LAMMPS 联合编译安装,并运行推理**,且没有对 C++ 代码进行修改,则无需重新联合编译 Paddle 推理库和 LAMMPS,直接运行以下命令即可开始推理。

``` sh
# 设置推理时的 GPU 卡号
Expand All @@ -182,7 +183,7 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
lmp_serial -in in.lammps
```

---
--------------------------------------------------------------------------------

<span style="font-size:larger;">DeePMD-kit Manual</span>
========
Expand Down Expand Up @@ -216,7 +217,8 @@ For more information, check the [documentation](https://deepmd.readthedocs.io/).

# Highlights in DeePMD-kit v2.0

* [Model compression](doc/freeze/compress.md). Accelerate the efficiency of model inference 4-15 times.
- [Model compression](doc/freeze/compress.md). Accelerate the efficiency of model inference 4-15 times.

- [New descriptors](doc/model/overall.md). Including [`se_e2_r`](doc/model/train-se-e2-r.md) and [`se_e3`](doc/model/train-se-e3.md).
- [Hybridization of descriptors](doc/model/train-hybrid.md). Hybrid descriptor constructed from the concatenation of several descriptors.
- [Atom type embedding](doc/model/train-se-e2-a-tebd.md). Enable atom-type embedding to decline training complexity and refine performance.
Expand All @@ -226,7 +228,8 @@ For more information, check the [documentation](https://deepmd.readthedocs.io/).

## Highlighted features

* **interfaced with TensorFlow**, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition, Tensorboard can be used to visualize training procedures.
- **interfaced with TensorFlow**, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition, Tensorboard can be used to visualize training procedures.

- **interfaced with high-performance classical MD and quantum (path-integral) MD packages**, i.e., LAMMPS and i-PI, respectively.
- **implements the Deep Potential series models**, which have been successfully applied to finite and extended systems including organic molecules, metals, semiconductors, insulators, etc.
- **implements MPI and GPU supports**, making it highly efficient for high-performance parallel and distributed computing.
Expand Down

0 comments on commit 786eda0

Please sign in to comment.