Skip to content

Commit

Permalink
refine docs
Browse files Browse the repository at this point in the history
  • Loading branch information
HydrogenSulfate committed Nov 27, 2023
1 parent 03c1318 commit 53844f0
Showing 1 changed file with 13 additions and 9 deletions.
22 changes: 13 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ python ./custom_op_test.py

除少量 `deprecated` 相关的警告外,如果输出全部都是 True,则说明自定义算子安装成功并且运行正常。

### 2.1 训练
### 2.2 训练

> [!NOTE]
> 暂时只支持 water_se_e2_a 案例的训练
Expand All @@ -63,7 +63,7 @@ cd examples/water/se_e2_a
dp train ./input.json
```

### 2.2 评估
### 2.3 评估

``` sh
# 进入案例目录
Expand All @@ -74,7 +74,7 @@ WEIGHT_PATH="path/to/your_model.pdparams"
dp test -m ${WEIGHT_PATH} -s ../data/data_3/ -n 30
```

### 2.3 导出静态图模型
### 2.4 导出静态图模型

``` sh
# 进入案例目录
Expand All @@ -87,7 +87,7 @@ DUMP_PATH="path/to/your_dump"
dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
```

### 2.4 在 LAMMPS(GPU) 中推理
### 2.5 在 LAMMPS(GPU) 中推理

1. 修改 `examples/water/lmp/in.lammps` 文件,将 `pair_style deepmd` 后面的路径改为 **2.3 导出静态图模型** 这一章节内设置好的 DUMP_PATH 的值

Expand All @@ -108,7 +108,7 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
pip install python/dist/paddlepaddle_gpu-0.0.0-cp39-cp39-linux_x86_64.whl
```

3. 安装 LAMMPS 并运行推理
3. Paddle 推理库和 LAMMPS 联合编译安装,并运行推理

``` sh
# 下载并解压 lammps 源码
Expand Down Expand Up @@ -166,7 +166,9 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
lmp_serial -in in.lammps
```

4. 直接运行推理
4. [可选]直接运行推理

若已完成 **3. Paddle 推理库和 LAMMPS 联合编译安装,并运行推理**,且没有对 C++ 代码进行修改,则无需重新联合编译 Paddle 推理库和 LAMMPS,直接运行以下命令即可开始推理。

``` sh
# 设置推理时的 GPU 卡号
Expand All @@ -182,7 +184,7 @@ dp freeze -i ${WEIGHT_PATH} -o ${DUMP_PATH}
lmp_serial -in in.lammps
```

---
--------------------------------------------------------------------------------

<span style="font-size:larger;">DeePMD-kit Manual</span>
========
Expand Down Expand Up @@ -216,7 +218,8 @@ For more information, check the [documentation](https://deepmd.readthedocs.io/).

# Highlights in DeePMD-kit v2.0

* [Model compression](doc/freeze/compress.md). Accelerate the efficiency of model inference 4-15 times.
- [Model compression](doc/freeze/compress.md). Accelerate the efficiency of model inference 4-15 times.

- [New descriptors](doc/model/overall.md). Including [`se_e2_r`](doc/model/train-se-e2-r.md) and [`se_e3`](doc/model/train-se-e3.md).
- [Hybridization of descriptors](doc/model/train-hybrid.md). Hybrid descriptor constructed from the concatenation of several descriptors.
- [Atom type embedding](doc/model/train-se-e2-a-tebd.md). Enable atom-type embedding to decline training complexity and refine performance.
Expand All @@ -226,7 +229,8 @@ For more information, check the [documentation](https://deepmd.readthedocs.io/).

## Highlighted features

* **interfaced with TensorFlow**, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition, Tensorboard can be used to visualize training procedures.
- **interfaced with TensorFlow**, one of the most popular deep learning frameworks, making the training process highly automatic and efficient, in addition, Tensorboard can be used to visualize training procedures.

- **interfaced with high-performance classical MD and quantum (path-integral) MD packages**, i.e., LAMMPS and i-PI, respectively.
- **implements the Deep Potential series models**, which have been successfully applied to finite and extended systems including organic molecules, metals, semiconductors, insulators, etc.
- **implements MPI and GPU supports**, making it highly efficient for high-performance parallel and distributed computing.
Expand Down

0 comments on commit 53844f0

Please sign in to comment.