forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add unitest code and fix for custom op installation in python
- Loading branch information
1 parent
0fd9f23
commit 0000512
Showing
2 changed files
with
276 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
import os | ||
from os import path as osp | ||
|
||
import paddle | ||
import paddle_deepmd_lib | ||
|
||
unitest_dir = os.getenv("UNITTEST_DIR", None) | ||
|
||
if unitest_dir is None: | ||
raise ValueError( | ||
"Please download unitest data and set env with 4 scipts below:\n" | ||
"1. wget -nc https://paddle-org.bj.bcebos.com/paddlescience/deepmd/deepmd_custom_op_test_data.tar\n" | ||
"2. tar -xf deepmd_custom_op_test_data.tar\n" | ||
"3. export UNITTEST_DIR=$PWD/deepmd_custom_op_test_data\n" | ||
"4. python ./custom_op_test.py\n" | ||
) | ||
|
||
|
||
def test_neighbor_stat(place="cpu"): | ||
print("=" * 10, f"test_neighbor_stat [place={place}]", "=" * 10) | ||
import numpy as np | ||
|
||
coord = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "neighbor_stat/coord.npy")) | ||
) | ||
type = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "neighbor_stat/type.npy")) | ||
) | ||
natoms = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "neighbor_stat/natoms_vec.npy")) | ||
) | ||
box = np.ascontiguousarray(np.load(osp.join(unitest_dir, "neighbor_stat/box.npy"))) | ||
default_mesh = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "neighbor_stat/default_mesh.npy")) | ||
) | ||
|
||
rcut = 6.0 | ||
|
||
coord = paddle.to_tensor(coord, "float32", place=place) | ||
type = paddle.to_tensor(type, "int32", place=place) | ||
natoms = paddle.to_tensor(natoms, "int64", place=place) | ||
box = paddle.to_tensor(box, "float32", place=place) | ||
default_mesh = paddle.to_tensor(default_mesh, "int32", place=place) | ||
|
||
mn, dt = paddle_deepmd_lib.neighbor_stat( | ||
coord, | ||
type, | ||
natoms, | ||
box, | ||
default_mesh, | ||
rcut=rcut, | ||
) | ||
|
||
mn_load = np.load(osp.join(unitest_dir, "neighbor_stat/mn.npy")) | ||
dt_load = np.load(osp.join(unitest_dir, "neighbor_stat/dt.npy")) | ||
|
||
# print(mn.shape, mn.min().item()); print(mn.max().item()); print(mn.mean().item()); print(mn.var().item()) | ||
# print(mn_load.shape); print(mn_load.min().item()); print(mn_load.max().item()); print(mn_load.mean().item()); print(mn_load.var().item()) | ||
# print(dt.shape, dt.min().item(), dt.max().item(), dt.mean().item(), dt.var().item()) | ||
# print(dt_load.shape, dt_load.min().item(), dt_load.max().item(), dt_load.mean().item(), dt_load.var().item()) | ||
|
||
print(np.allclose(mn.numpy(), mn_load, 1e-1)) | ||
print(np.allclose(dt.numpy(), dt_load, 1e-1)) | ||
|
||
|
||
def test_prod_env_mat_a(place="cpu"): | ||
print("=" * 10, f"test_prod_env_mat_a [place={place}]", "=" * 10) | ||
import numpy as np | ||
|
||
# "coord", "atype", "natoms", "box", "mesh", "t_avg", "t_std" | ||
coord = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.coord.npy")) | ||
) | ||
atype = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.atype.npy")) | ||
) | ||
natoms = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.natoms.npy")) | ||
) | ||
box = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.box.npy")) | ||
) | ||
mesh = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.mesh.npy")) | ||
) | ||
t_avg = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.t_avg.npy")) | ||
) | ||
t_std = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.t_std.npy")) | ||
) | ||
t_std = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.t_std.npy")) | ||
) | ||
|
||
coord = paddle.to_tensor(coord, place=place) | ||
atype = paddle.to_tensor(atype, place=place) | ||
natoms = paddle.to_tensor(natoms, place="cpu") | ||
box = paddle.to_tensor(box, place=place) | ||
mesh = paddle.to_tensor(mesh, place=place) | ||
t_avg = paddle.to_tensor(t_avg, place=place) | ||
t_std = paddle.to_tensor(t_std, place=place) | ||
|
||
rcut_a = -1 | ||
rcut_r = 6.0 | ||
rcut_r_smth = 0.5 | ||
sel_a = [46, 92] | ||
sel_r = [0, 0] | ||
|
||
# print(coord.shape, coord.dtype, coord.place) | ||
# print(atype.shape, atype.dtype, atype.place) | ||
# print(box.shape, box.dtype, box.place) | ||
# print(mesh.shape, mesh.dtype, mesh.place) | ||
# print(t_avg.shape, t_avg.dtype, t_avg.place) | ||
# print(t_std.shape, t_std.dtype, t_std.place) | ||
# print(natoms.shape, natoms.dtype, natoms.place) | ||
# print(rcut_a) | ||
# print(rcut_r) | ||
# print(rcut_r_smth) | ||
# print(sel_a) | ||
# print(sel_r) | ||
|
||
descrpt, descrpt_deriv, rij, nlist = paddle_deepmd_lib.prod_env_mat_a( | ||
coord, | ||
atype, | ||
box, | ||
mesh, | ||
t_avg, | ||
t_std, | ||
natoms, | ||
rcut_a, | ||
rcut_r, | ||
rcut_r_smth, | ||
sel_a, | ||
sel_r, | ||
) | ||
descrpt_load = np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.descrpt.npy")) | ||
descrpt_deriv_load = np.load( | ||
osp.join(unitest_dir, "prod_env_mat_a/descrpt.descrpt_deriv.npy") | ||
) | ||
rij_load = np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.rij.npy")) | ||
nlist_load = np.load(osp.join(unitest_dir, "prod_env_mat_a/descrpt.nlist.npy")) | ||
# print(descrpt.shape) | ||
# print(descrpt_deriv.shape) | ||
# print(rij.shape) | ||
# print(nlist.shape) | ||
# print(descrpt_load.shape) # (1, 576) | ||
# print(descrpt_deriv_load.shape) # (1, 192) | ||
# print(rij_load.shape) # (4,) | ||
# print(nlist_load.shape) # (1, 9) | ||
|
||
print(np.allclose(descrpt.numpy(), descrpt_load)) | ||
print(np.allclose(descrpt_deriv.numpy(), descrpt_deriv_load)) | ||
print(np.allclose(rij.numpy(), rij_load)) | ||
print(np.allclose(nlist.numpy(), nlist_load)) | ||
|
||
|
||
def test_prod_force_se_a(place="cpu"): | ||
print("=" * 10, f"test_prod_force_se_a [place={place}]", "=" * 10) | ||
import numpy as np | ||
|
||
# "coord", "atype", "natoms", "box", "mesh", "t_avg", "t_std" | ||
net_deriv_reshape = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_force_se_a/descrpt.net_deriv_reshape.npy")) | ||
) | ||
descrpt_deriv = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_force_se_a/descrpt.descrpt_deriv.npy")) | ||
) | ||
nlist = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_force_se_a/descrpt.nlist.npy")) | ||
) | ||
natoms = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_force_se_a/descrpt.natoms.npy")) | ||
) | ||
|
||
nnei_a = 138 | ||
nnei_r = 0 | ||
|
||
net_deriv_reshape = paddle.to_tensor( | ||
net_deriv_reshape, stop_gradient=False, place=place | ||
) | ||
descrpt_deriv = paddle.to_tensor(descrpt_deriv, place=place) | ||
nlist = paddle.to_tensor(nlist, place=place) | ||
natoms = paddle.to_tensor(natoms, place="cpu") # [192, 192, 64 , 128] | ||
force = paddle_deepmd_lib.prod_force_se_a( | ||
net_deriv_reshape, | ||
descrpt_deriv, | ||
nlist, | ||
natoms, | ||
n_a_sel=nnei_a, | ||
n_r_sel=nnei_r, | ||
) | ||
force.sum().backward() | ||
# print(f"net_deriv_reshape.grad.shape = {net_deriv_reshape.grad.shape}") | ||
|
||
force_load = np.load(osp.join(unitest_dir, "prod_force_se_a/descrpt.force.npy")) | ||
# print(force.shape) # (1, 9) | ||
# print(force_load.shape) # (1, 9) | ||
|
||
print(np.allclose(force.numpy(), force_load)) | ||
|
||
|
||
def test_prod_virial_se_a(place="cpu"): | ||
print("=" * 10, f"test_prod_virial_se_a [place={place}]", "=" * 10) | ||
import numpy as np | ||
|
||
# "coord", "atype", "natoms", "box", "mesh", "t_avg", "t_std" | ||
net_deriv_reshape = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_virial_se_a/descrpt.net_deriv_reshape.npy")) | ||
) | ||
descrpt_deriv = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_virial_se_a/descrpt.descrpt_deriv.npy")) | ||
) | ||
rij = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_virial_se_a/descrpt.rij.npy")) | ||
) | ||
nlist = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_virial_se_a/descrpt.nlist.npy")) | ||
) | ||
natoms = np.ascontiguousarray( | ||
np.load(osp.join(unitest_dir, "prod_virial_se_a/descrpt.natoms.npy")) | ||
) | ||
|
||
nnei_a = 138 | ||
nnei_r = 0 | ||
|
||
net_deriv_reshape = paddle.to_tensor( | ||
net_deriv_reshape, stop_gradient=False, place=place | ||
) | ||
descrpt_deriv = paddle.to_tensor(descrpt_deriv, place=place) | ||
rij = paddle.to_tensor(rij, place=place) | ||
nlist = paddle.to_tensor(nlist, place=place) | ||
# natoms = natoms.tolist() | ||
natoms = paddle.to_tensor(natoms, place="cpu") # [192, 192, 64 , 128] | ||
# print(natoms.place) | ||
# print(natoms.dtype) | ||
# print(natoms) | ||
virial, atom_virial = paddle_deepmd_lib.prod_virial_se_a( | ||
net_deriv_reshape, | ||
descrpt_deriv, | ||
rij, | ||
nlist, | ||
natoms, | ||
n_a_sel=nnei_a, | ||
n_r_sel=nnei_r, | ||
) | ||
virial.sum().backward() | ||
# print(f"net_deriv_reshape.grad.shape = {net_deriv_reshape.grad.shape}") | ||
|
||
virial_load = np.load(osp.join(unitest_dir, "prod_virial_se_a/descrpt.virial.npy")) | ||
atom_virial_load = np.load( | ||
osp.join(unitest_dir, "prod_virial_se_a/descrpt.atom_virial.npy") | ||
) | ||
# print(virial.shape) # (1, 9) | ||
# print(virial_load.shape) # (1, 9) | ||
# print(atom_virial.shape) # (1, 9) | ||
# print(atom_virial_load.shape) # (1, 9) | ||
|
||
print(np.allclose(virial.numpy(), virial_load)) | ||
print(np.allclose(atom_virial.numpy(), atom_virial_load)) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_neighbor_stat() | ||
|
||
test_prod_env_mat_a("gpu") | ||
test_prod_force_se_a("gpu") | ||
test_prod_virial_se_a("gpu") | ||
|
||
test_prod_env_mat_a("cpu") | ||
test_prod_force_se_a("cpu") | ||
test_prod_virial_se_a("cpu") |