-
Notifications
You must be signed in to change notification settings - Fork 256
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
213 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "5c06148d9ff6b57", | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"source": [ | ||
"This notebook loads all the optuna studies in the \"tuning\" folder and arranges them in a dataframe. It also loads the performance of the best model from the paper and the rerun results.\n", | ||
"\n", | ||
"It can serve as a starting point for further analysis." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "31e6f532-15c3-494a-8a3a-de25ecc1ee90", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Load all the studies into a dataframe\n", | ||
"\n", | ||
"import optuna\n", | ||
"from collections import Counter\n", | ||
"from optuna.trial import TrialState\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"import datetime\n", | ||
"from pathlib import Path\n", | ||
"\n", | ||
"import imitation.util.sacred_file_parsing as sfp\n", | ||
"\n", | ||
"\n", | ||
"experiment_log_files = list(Path().glob(\"*/*.log\"))\n", | ||
"\n", | ||
"experiment_log_files\n", | ||
"\n", | ||
"raw_study_data = []\n", | ||
"\n", | ||
"for log_file in experiment_log_files:\n", | ||
" d = dict()\n", | ||
" \n", | ||
" d['logfile'] = log_file\n", | ||
" \n", | ||
" study = optuna.load_study(storage=optuna.storages.JournalStorage(\n", | ||
" optuna.storages.JournalFileStorage(str(log_file))\n", | ||
" ),\n", | ||
" # in our case, we have one journal file per study so the study name can be\n", | ||
" # inferred\n", | ||
" study_name=None,\n", | ||
" )\n", | ||
" d['study'] = study\n", | ||
" d['study_name'] = study.study_name\n", | ||
" \n", | ||
" trial_state_counter = Counter(t.state for t in study.trials)\n", | ||
" n_completed_trials = trial_state_counter[TrialState.COMPLETE]\n", | ||
" d['trials'] = n_completed_trials\n", | ||
" d['trials_running'] = Counter(t.state for t in study.trials)[TrialState.RUNNING]\n", | ||
" d['trials_failed'] = Counter(t.state for t in study.trials)[TrialState.FAIL]\n", | ||
" d['all_trials'] = len(study.trials)\n", | ||
" \n", | ||
" if n_completed_trials > 0:\n", | ||
" d['best_value'] = round(study.best_trial.value, 2)\n", | ||
" \n", | ||
" assert \"_\" in study.study_name\n", | ||
" study_segments = study.study_name.split(\"_\") \n", | ||
" assert len(study_segments) > 3\n", | ||
" tuning, algo, with_ = study_segments[:3]\n", | ||
" assert (tuning, with_) == (\"tuning\", \"with\")\n", | ||
" \n", | ||
" d['algo'] = algo\n", | ||
" d['env'] = \"_\".join(study_segments[3:])\n", | ||
" d['best_trial_duration'] = study.best_trial.duration\n", | ||
" d['mean_duration'] = sum([t.duration for t in study.trials if t.state == TrialState.COMPLETE], datetime.timedelta())/n_completed_trials\n", | ||
" \n", | ||
" reruns_folder = log_file.parent / \"reruns\"\n", | ||
" rerun_results = [round(run['result']['imit_stats']['monitor_return_mean'], 2)\n", | ||
" for conf, run in sfp.find_sacred_runs(reruns_folder, only_completed_runs=True)]\n", | ||
" d['rerun_values'] = rerun_results\n", | ||
" \n", | ||
" raw_study_data.append(d)\n", | ||
" \n", | ||
"study_data = pd.DataFrame(raw_study_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b604bc7e-2e61-4f7f-acfe-87b57e8a2f5a", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Add performance of the best model from the paper\n", | ||
"import pandas as pd\n", | ||
"\n", | ||
"environments = [\n", | ||
" \"seals_ant\",\n", | ||
" \"seals_half_cheetah\",\n", | ||
" \"seals_hopper\",\n", | ||
" \"seals_swimmer\",\n", | ||
" \"seals_walker\",\n", | ||
" \"seals_humanoid\",\n", | ||
" \"seals_cartpole\",\n", | ||
" \"pendulum\",\n", | ||
" \"seals_mountain_car\"\n", | ||
"]\n", | ||
"\n", | ||
"pc_paper_700 = dict(\n", | ||
" seals_ant=200,\n", | ||
" seals_half_cheetah=4700,\n", | ||
" seals_hopper=4500,\n", | ||
" seals_swimmer=170,\n", | ||
" seals_walker=4900,\n", | ||
" seals_humanoid=\"-\",\n", | ||
" seals_cartpole=\"-\",\n", | ||
" pendulum=1300,\n", | ||
" seals_mountain_car=\"-\",\n", | ||
")\n", | ||
"\n", | ||
"pc_paper_1400 = dict(\n", | ||
" seals_ant=100,\n", | ||
" seals_half_cheetah=5600,\n", | ||
" seals_hopper=4500,\n", | ||
" seals_swimmer=175,\n", | ||
" seals_walker=5900,\n", | ||
" seals_humanoid=\"-\",\n", | ||
" seals_cartpole=\"-\",\n", | ||
" pendulum=750,\n", | ||
" seals_mountain_car=\"-\",\n", | ||
")\n", | ||
"\n", | ||
"rl_paper = dict(\n", | ||
" seals_ant=16,\n", | ||
" seals_half_cheetah=420,\n", | ||
" seals_hopper=4210,\n", | ||
" seals_swimmer=175,\n", | ||
" seals_walker=5370,\n", | ||
" seals_humanoid=\"-\",\n", | ||
" seals_cartpole=\"-\",\n", | ||
" pendulum=1300,\n", | ||
" seals_mountain_car=\"-\",\n", | ||
")\n", | ||
"\n", | ||
"rl_ours = dict(\n", | ||
" seals_ant=3034,\n", | ||
" seals_half_cheetah=1675.76,\n", | ||
" seals_hopper=203.45,\n", | ||
" seals_swimmer=292.84,\n", | ||
" seals_walker=2465.56,\n", | ||
" seals_humanoid=3224.12,\n", | ||
" seals_cartpole=500.00,\n", | ||
" pendulum=-189.25,\n", | ||
" seals_mountain_car=-97.00,\n", | ||
")\n", | ||
"\n", | ||
"for algo, values_by_env in dict(\n", | ||
" pc_paper_700=pc_paper_700,\n", | ||
" pc_paper_1400=pc_paper_1400,\n", | ||
" rl_paper=rl_paper,\n", | ||
" rl_ours=rl_ours,\n", | ||
").items():\n", | ||
" for env, value in values_by_env.items():\n", | ||
" if value == \"-\":\n", | ||
" continue\n", | ||
" raw_study_data.append(dict(\n", | ||
" algo=algo,\n", | ||
" env=env,\n", | ||
" best_value=value,\n", | ||
" ))\n", | ||
" \n", | ||
"study_data = pd.DataFrame(raw_study_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2e9ae5ca-5002-411b-beaf-cb98eb12f54c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from IPython.display import display\n", | ||
"\n", | ||
"print(\"Benchmark Data\")\n", | ||
"display(study_data[[\"algo\", \"env\", \"best_value\"]])\n", | ||
"\n", | ||
"print(\"Rerun Data\")\n", | ||
"display(study_data[[\"algo\", \"env\", \"best_value\", \"rerun_values\"]][study_data[\"rerun_values\"].map(np.std) > 0])" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |