(Image from CamVid Dataset https://github.com/alexgkendall/SegNet-Tutorial/tree/master/CamVid)
Shape : (1, 3, 360, 480)
Shape : (1, 3, 512, 1024)
Shape : (1, 12, 360, 480)
Shape : (1, 20, 512, 1024)
CATEGORY = [
'sky', 'building', 'pole', 'road_marking', 'road', 'pavement',
'tree', 'sign_symbol', 'fence', 'car', 'pedestrian', 'bicyclist', 'unlabeled',
]
CATEGORY = [
'unlabeled', 'road', 'sidewalk', 'building', 'wall',
'fence', 'pole', 'traffic_light', 'traffic_sign', 'vegetation',
'terrain', 'sky', 'person', 'rider', 'car',
'truck', 'bus', 'train', 'motorcycle', 'bicycle',
]
Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.
For the sample image,
$ python3 pytorch-enet.py
If you want to specify the input image, put the image path after the --input
option.
You can use --savepath
option to change the name of the output file to save.
$ python3 pytorch-enet.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH
By adding the --video
option, you can input the video.
If you pass 0
as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.
$ python3 pytorch-enet.py --video VIDEO_PATH
By adding the --model_type
option, you can specify mdoel type which is selected from "camvid", "cityscapes".
(default is camvid)
$ python3 pytorch-enet.py --model_type camvid
Pytorch
ONNX opset=11