Skip to content

Latest commit

 

History

History
86 lines (62 loc) · 2.14 KB

File metadata and controls

86 lines (62 loc) · 2.14 KB

PyTorch-ENet

Input

Input

(Image from CamVid Dataset https://github.com/alexgkendall/SegNet-Tutorial/tree/master/CamVid)

CamVid

Shape : (1, 3, 360, 480)

Cityscapes

Shape : (1, 3, 512, 1024)

Output

CamVid

Output

Shape : (1, 12, 360, 480)

Cityscapes

Shape : (1, 20, 512, 1024)

Category

CamVid

CATEGORY = [
  'sky', 'building', 'pole', 'road_marking', 'road', 'pavement', 
  'tree', 'sign_symbol', 'fence', 'car', 'pedestrian', 'bicyclist', 'unlabeled', 
]

Cityscapes

CATEGORY = [
  'unlabeled', 'road', 'sidewalk', 'building', 'wall',
  'fence', 'pole', 'traffic_light', 'traffic_sign', 'vegetation', 
  'terrain', 'sky', 'person', 'rider', 'car', 
  'truck', 'bus', 'train', 'motorcycle', 'bicycle',
]

Usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 pytorch-enet.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 pytorch-enet.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 pytorch-enet.py --video VIDEO_PATH

By adding the --model_type option, you can specify mdoel type which is selected from "camvid", "cityscapes".
(default is camvid)

$ python3 pytorch-enet.py --model_type camvid

Reference

Framework

Pytorch

Model Format

ONNX opset=11

Netron

enet_camvid.onnx.prototxt
enet_cityscapes.onnx.prototxt