Skip to content

Commit

Permalink
fairseq-fork content for 1.17.0
Browse files Browse the repository at this point in the history
Signed-off-by: SW publisher <[email protected]>
  • Loading branch information
SW publisher authored and Jenkins committed Aug 11, 2024
1 parent e16e44c commit dc8bfa1
Show file tree
Hide file tree
Showing 35 changed files with 1,173 additions and 968 deletions.
1 change: 1 addition & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
MIT License

Copyright (c) 2022 Habana Labs, Ltd. an Intel Company
Copyright (c) Facebook, Inc. and its affiliates.

Permission is hereby granted, free of charge, to any person obtaining a copy
Expand Down
154 changes: 11 additions & 143 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,10 @@
<a href="https://app.circleci.com/pipelines/github/facebookresearch/fairseq/"><img alt="CicleCI Status" src="https://circleci.com/gh/facebookresearch/fairseq.svg?style=shield" /></a>
</p>

--------------------------------------------------------------------------------

Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.
This repo is forked from Fairseq and includes changes to run models on Intel® Gaudi® AI accelerators.

We provide reference implementations of various sequence modeling papers:

Expand Down Expand Up @@ -69,159 +68,28 @@ We provide reference implementations of various sequence modeling papers:

</p></details>

### What's New:
* June 2022 [Released code for wav2vec-U 2.0 from Towards End-to-end Unsupervised Speech Recognition (Liu, et al., 2022)](examples/wav2vec/unsupervised/README.md)
* May 2022 [Integration with xFormers](https://github.com/facebookresearch/xformers)
* December 2021 [Released Direct speech-to-speech translation code](examples/speech_to_speech/README.md)
* October 2021 [Released VideoCLIP and VLM models](examples/MMPT/README.md)
* October 2021 [Released multilingual finetuned XLSR-53 model](examples/wav2vec/README.md)
* September 2021 [`master` branch renamed to `main`](https://github.com/github/renaming).
* July 2021 [Released DrNMT code](examples/discriminative_reranking_nmt/README.md)
* July 2021 [Released Robust wav2vec 2.0 model](examples/wav2vec/README.md)
* June 2021 [Released XLMR-XL and XLMR-XXL models](examples/xlmr/README.md)
* May 2021 [Released Unsupervised Speech Recognition code](examples/wav2vec/unsupervised/README.md)
* March 2021 [Added full parameter and optimizer state sharding + CPU offloading](examples/fully_sharded_data_parallel/README.md)
* February 2021 [Added LASER training code](examples/laser/README.md)
* December 2020: [Added Adaptive Attention Span code](examples/adaptive_span/README.md)
* December 2020: [GottBERT model and code released](examples/gottbert/README.md)
* November 2020: Adopted the [Hydra](https://github.com/facebookresearch/hydra) configuration framework
* [see documentation explaining how to use it for new and existing projects](docs/hydra_integration.md)
* November 2020: [fairseq 0.10.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.10.0)
* October 2020: [Added R3F/R4F (Better Fine-Tuning) code](examples/rxf/README.md)
* October 2020: [Deep Transformer with Latent Depth code released](examples/latent_depth/README.md)
* October 2020: [Added CRISS models and code](examples/criss/README.md)

<details><summary>Previous updates</summary><p>

* September 2020: [Added Linformer code](examples/linformer/README.md)
* September 2020: [Added pointer-generator networks](examples/pointer_generator/README.md)
* August 2020: [Added lexically constrained decoding](examples/constrained_decoding/README.md)
* August 2020: [wav2vec2 models and code released](examples/wav2vec/README.md)
* July 2020: [Unsupervised Quality Estimation code released](examples/unsupervised_quality_estimation/README.md)
* May 2020: [Follow fairseq on Twitter](https://twitter.com/fairseq)
* April 2020: [Monotonic Multihead Attention code released](examples/simultaneous_translation/README.md)
* April 2020: [Quant-Noise code released](examples/quant_noise/README.md)
* April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
* March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
* February 2020: [mBART model and code released](examples/mbart/README.md)
* February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/main/examples/backtranslation#training-your-own-model-wmt18-english-german)
* December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
* November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
* November 2019: [CamemBERT model and code released](examples/camembert/README.md)
* November 2019: [BART model and code released](examples/bart/README.md)
* November 2019: [XLM-R models and code released](examples/xlmr/README.md)
* September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
* August 2019: [WMT'19 models released](examples/wmt19/README.md)
* July 2019: fairseq relicensed under MIT license
* July 2019: [RoBERTa models and code released](examples/roberta/README.md)
* June 2019: [wav2vec models and code released](examples/wav2vec/README.md)

</p></details>

### Features:

* multi-GPU training on one machine or across multiple machines (data and model parallel)
* fast generation on both CPU and GPU with multiple search algorithms implemented:
+ beam search
+ Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
+ sampling (unconstrained, top-k and top-p/nucleus)
+ [lexically constrained decoding](examples/constrained_decoding/README.md) (Post & Vilar, 2018)
* [gradient accumulation](https://fairseq.readthedocs.io/en/latest/getting_started.html#large-mini-batch-training-with-delayed-updates) enables training with large mini-batches even on a single GPU
* [mixed precision training](https://fairseq.readthedocs.io/en/latest/getting_started.html#training-with-half-precision-floating-point-fp16) (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
* [extensible](https://fairseq.readthedocs.io/en/latest/overview.html): easily register new models, criterions, tasks, optimizers and learning rate schedulers
* [flexible configuration](docs/hydra_integration.md) based on [Hydra](https://github.com/facebookresearch/hydra) allowing a combination of code, command-line and file based configuration
* [full parameter and optimizer state sharding](examples/fully_sharded_data_parallel/README.md)
* [offloading parameters to CPU](examples/fully_sharded_data_parallel/README.md)

We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
with a convenient `torch.hub` interface:

``` python
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'
```

See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.

# Requirements and Installation

* [PyTorch](http://pytorch.org/) version >= 1.10.0
* Python version >= 3.8
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* Please follow the instructions provided in the [Gaudi Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html)
to set up the environment. To achieve the best performance, please follow the methods outlined in the
[Optimizing Training Platform guide](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_Training_Platform.html).
The guides will walk you through the process of setting up your system to run the model on Gaudi.
* **To install fairseq** and develop locally:

``` bash
git clone https://github.com/pytorch/fairseq
git clone https://github.com/HabanaAI/fairseq
cd fairseq
pip install --editable ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./

# to install the latest stable release (0.10.x)
# pip install fairseq
```

* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:

``` bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
--global-option="--fast_multihead_attn" ./
```

* **For large datasets** install [PyArrow](https://arrow.apache.org/docs/python/install.html#using-pip): `pip install pyarrow`
* If you use Docker make sure to increase the shared memory size either with `--ipc=host` or `--shm-size`
as command line options to `nvidia-docker run` .

# Getting Started

The [full documentation](https://fairseq.readthedocs.io/) contains instructions
for getting started, training new models and extending fairseq with new model
types and tasks.

# Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
as well as example training and evaluation commands.

* [Translation](examples/translation/README.md): convolutional and transformer models are available
* [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available

We also have more detailed READMEs to reproduce results from specific papers:

* [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale (Babu et al., 2021)](examples/wav2vec/xlsr/README.md)
* [Cross-lingual Retrieval for Iterative Self-Supervised Training (Tran et al., 2020)](examples/criss/README.md)
* [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations (Baevski et al., 2020)](examples/wav2vec/README.md)
* [Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020)](examples/unsupervised_quality_estimation/README.md)
* [Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)](examples/quant_noise/README.md)
* [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
* [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
* [Reducing Transformer Depth on Demand with Structured Dropout (Fan et al., 2019)](examples/layerdrop/README.md)
* [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md)
* [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
* [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
* [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
* [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
* [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
* [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
* [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
* [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
* [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
* [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
* [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
* [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/README.conv.md)

# Join the fairseq community

* Twitter: https://twitter.com/fairseq
* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users
List of models for which training has been tested on Gaudi devices:
- [Transformer](examples/translation/README.md)

In order to train another model available in fairseq (other than those listed above) on Gaudi device, please follow the instructions below,
- Use "--hpu" argument when invoking command-line tools such as fairseq-train, fairseq-interactive, fairseq-generate etc.
- Enable mixed precision training by using "--hpu-mixed-precision-mode autocast" when invoking command-line tools such as fairseq-train.
# License

fairseq(-py) is MIT-licensed.
Expand Down
Loading

0 comments on commit dc8bfa1

Please sign in to comment.