Skip to content

Deep graph embedding for structure learning in e-commerce

Notifications You must be signed in to change notification settings

HKongTeam/DEGREE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

DEGREE (Deep Graph Embedding for Structure Learning)

These scripts are implementations of DEGREE model in our manuscript entitled "Deep Graph Embedding for Structure Learning in E-commerce". Here is the architecture of DEGREE. With DEGREE, our goal is to learn valuable network representations, as well as preserve both inter-group structure and intra-group structure in e-commerce network.

DEGREE architecture

Dependencies

The pipeline requires:

Tutorial

You can type python DEGREE.py to see options as follows: Usage: DEGREE.py [options]

Options:
  -h, --help            show this help message and exit
  --train_file=FILE, --train_set_list=FILE
                        Required. Absolute path. Training data set (for now*.txt)
  --test_file=FILE, --test_set_list=FILE
                        Required. Absolute path. Test data set (for now *.txt)
  --nB=NB, --num_of_buyer=NB
                        Required. Num of buyer.
  --nS=NS, --num_of_seller=NS
                        Required. Num of seller.
  --outdir=STRING, --outdir=STRING
                        Required. Output folder
  --model_file=MODEL_FILE, --model_file=MODEL_FILE
                        True or False. load model from a saved file.
  --embedding_size=EMBEDDING_SIZE, --embedding_size=EMBEDDING_SIZE
                        Embedding size. Default is 16.
  --batch_size=BATCH_SIZE, --batch_size=BATCH_SIZE
                        Batch size. Default is 10000.
  --train_nbatch=TRAIN_NBATCH, --train_nbatch=TRAIN_NBATCH
                        Train n batches. Default is 5000.
  --test_nbatch=TEST_NBATCH, --test_nbatch=TEST_NBATCH
                        Test n batches. Default is 231.
  --omegaB=OMEGAB       Regularizer of Gb. Default is 1.
  --omegaS=OMEGAS       Regularizer of Gs. Default is 1.
  --lambdaB=LAMBDAB     Regularizer of Embedding. Default is 0.0003.
  --lambdaS=LAMBDAS     Regularizer of Embedding. Default is 0.01.
  --alpha=ALPHA         Regularizer of Weights. Default is 0.1.
  --lr=LR               Learning rate. Default is 0.002.
  --other_ext=OTHER_EXT, --other_ext=OTHER_EXT
                        other_extensions

Run following commands to learn graph embedding:

python DEGREE.py --train_file=../data/small_sample_train.txt --test_file=../data/small_sample_test.txt --outdir=../result --nB=100000 --nS=66020 --train_nbatch=10000 --alpha=0.1 --lr=0.01 --other_ext="_sigmoid_SGD" --model_file=False

Project home page

For information on the source tree, examples, issues, and pull requests, see

https://github.com/HKongTeam/DEGREE

About

Deep graph embedding for structure learning in e-commerce

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages