Skip to content

Commit

Permalink
Added visualisation using networkx #22
Browse files Browse the repository at this point in the history
  • Loading branch information
TharunSethuraman committed Jun 15, 2022
1 parent 85da60f commit 7eb6f0b
Showing 1 changed file with 16 additions and 21 deletions.
37 changes: 16 additions & 21 deletions gtsam/planar_SLAM/script/planerSLAM_for_collected_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@
import numpy as np
from gtsam.symbol_shorthand import L, X
from sympy import O

import networkx as nx
from networkx.drawing.nx_pydot import write_dot
from typing import Sequence
import numpy as np
import numpy.linalg as linalg
Expand All @@ -34,10 +35,8 @@



# file_name = "/home/ravi/Desktop/Work/semester_2/sdp/Sdp_factor_graphs/gtsam/data_collection/Extracted_data_from_bag_files/sdp_data_collection_look_one_3_marker.csv"
# file_name = '/home/ravi/Desktop/Work/semester_2/sdp/Sdp_factor_graphs/gtsam/data_collection/Extracted_data_from_bag_files/sdp_data_collection_look_one_marker.csv'
# file_name = '/home/ravi/Desktop/Work/semester_2/sdp/Sdp_factor_graphs/gtsam/data_collection/Extracted_data_from_bag_files/sdp_data_collection_look_one_two_marker_full_loop.csv'
file_name = '/home/ravi/Desktop/Work/semester_2/sdp/Sdp_factor_graphs/gtsam/data_collection/Extracted_data_from_bag_files/sdp_data_collection_look_one_two_3_marker.csv'
file_name = "/home/tharun/Desktop/Semester_2/SDP/ss22-factor-graph-slam/gtsam/data_collection/Extracted_data_from_bag_files/sdp_data_collection_look_one_3_marker.csv"

x_distance_step = None
y_distance_step = None

Expand Down Expand Up @@ -179,7 +178,7 @@ def dict_generator():

our_data = data_loader()

our_data = our_data[0::20] # take every 20th data point # to reduce the size of the data
our_data = our_data[0::50] # take every 20th data point # to reduce the size of the data

print(our_data)

Expand All @@ -192,6 +191,7 @@ def dict_generator():
LM_dict ={}
cnt=0


for i in ids_in_data:
if (np.isnan(i)):
continue
Expand All @@ -202,12 +202,13 @@ def dict_generator():
return LM_dict, ids_in_data



def main():
"""Main runner"""

# Getting Landmarks:

G = nx.Graph()

landmarks , ids_in_data = dict_generator()

# Create an empty nonlinear factor graph
Expand All @@ -216,6 +217,7 @@ def main():
# Create the keys corresponding to unknown variables in the factor graph

#First node with prior
G.add_edges_from([ ["X0", "L"+str(landmarks[ids_in_data[0]]) ] ])
graph.add(gtsam.PriorFactorPose2(X(0),gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))
angle = yaw_angle_calculator(0)
graph.add(gtsam.BearingRangeFactor2D(X(0), L(landmarks[ids_in_data[0]]), gtsam.Rot2.fromDegrees(angle),0, MEASUREMENT_NOISE))
Expand All @@ -226,7 +228,8 @@ def main():
graph.add(gtsam.BetweenFactorPose2(X(i-1), X(i), gtsam.Pose2(0.00944, -0.09073, 0.0),ODOMETRY_NOISE))
angle = yaw_angle_calculator(i)
graph.add(gtsam.BearingRangeFactor2D(X(i), L(landmarks[ids_in_data[i]]), gtsam.Rot2.fromDegrees(angle),0, MEASUREMENT_NOISE))

G.add_edges_from([ ["X"+str(i-1),"X"+str(i)] ])
G.add_edges_from([ ["X"+str(i),"L"+str(landmarks[ids_in_data[i]]) ] ])

# Print graph
# print("Factor Graph:\n{}".format(graph))
Expand All @@ -249,7 +252,6 @@ def main():
# to use, and the amount of information displayed during optimization.
# Here we will use the default set of parameters. See the
# documentation for the full set of parameters.

params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate,
params)
Expand All @@ -264,20 +266,13 @@ def main():

# final_data.tofile('/home/tharun/Desktop/Semester_2/SDP/GTSAM/gtsam/python/gtsam/examples/csv_files/final_data.csv',sep=',',format='%10.5f')

pd.DataFrame(final_data).to_csv('/home/ravi/Desktop/Work/semester_2/sdp/Sdp_factor_graphs/gtsam/planar_slam_output'+'_look_one_two_3_marker'+'.csv',sep=',',index=False)
pd.DataFrame(final_data).to_csv('/home/tharun/Desktop/Semester_2/SDP/ss22-factor-graph-slam/gtsam/planar_slam_output.csv',sep=',',index=False)
print("\nFinal Result:\n{}".format(result))

# Calculate and print marginal covariances for all variables
# marginals = gtsam.Marginals(graph, result)


# for (key, s) in [(X1, "X1"), (X2, "X2"), (X3, "X3"), (L1, "L1"),
# (L2, "L2")]:
# print("{} covariance:\n{}\n".format(s,
# marginals.marginalCovariance(key)))
# graphviz_formatting = gtsam.GraphvizFormatting()
# graph.dot(result,writer=graphviz_formatting)

print(landmarks)
nx.draw(G, with_labels=True, cmap = plt.get_cmap('jet'))
write_dot(G, '/home/tharun/Desktop/Semester_2/sample.dot')
plt.show()

if __name__ == "__main__":
main()
Expand Down

0 comments on commit 7eb6f0b

Please sign in to comment.