Skip to content

Latest commit

 

History

History
 
 

llava

LLaVA

Visual Instruction Tuning

Abstract

Instruction tuning large language models (LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks, but the idea is less explored in the multimodal field. In this paper, we present the first attempt to use language-only GPT-4 to generate multimodal language-image instruction-following data. By instruction tuning on such generated data, we introduce LLaVA: Large Language and Vision Assistant, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language understanding.Our early experiments show that LLaVA demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset. When fine-tuned on Science QA, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%. We make GPT-4 generated visual instruction tuning data, our model and code base publicly available.

How to use it?

Use the model

import torch
from mmpretrain import get_model, inference_model

out = inference_model('llava-7b-v1_caption', 'demo/cat-dog.png', device='cuda')
print(out)
# {'pred_caption': 'In the image, there are two cats sitting on a blanket.'}

Models and results

Image Caption on COCO

Model Params (M) Config Download
llava-7b-v1_caption 7045.82 config ckpt
llava-7b-v1.5_caption 7062.90 config ckpt
llava-7b-v1.5_vqa 7062.90 config ckpt

Citation

@misc{liu2023llava,
      title={Visual Instruction Tuning},
      author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
      publisher={arXiv:2304.08485},
      year={2023},
}