forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llava-7b-v1.5_caption.py
76 lines (69 loc) · 2.15 KB
/
llava-7b-v1.5_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
_base_ = '../_base_/default_runtime.py'
meta_prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions." # noqa: E501
image_size = 336
prompt_tmpl = f'''{meta_prompt} User: <image>
Describe the image in detail. ASSISTANT:'''
# model settings
model = dict(
type='Llava',
tokenizer=dict(
type='AutoTokenizer', name_or_path='liuhaotian/llava-v1.5-7b'),
vision_encoder=dict(
type='VisionTransformer',
arch='l',
patch_size=14,
img_size=image_size,
pre_norm=True,
norm_cfg=dict(type='LN', eps=1e-5),
layer_cfgs=dict(act_cfg=dict(type='mmpretrain.QuickGELU')),
final_norm=False,
out_type='raw',
pretrained='https://download.openmmlab.com/mmclassification/v0/clip/'
'vit-large-p14_clip-openai-pre_336px_20231025-fb1315ed.pth',
),
mm_hidden_size=1024,
use_im_patch=False,
use_im_start_end=False,
mm_proj_depth=2,
lang_encoder=dict(
type='AutoModelForCausalLM',
name_or_path='huggyllama/llama-7b',
),
task='caption',
prompt_tmpl=prompt_tmpl,
generation_cfg=dict(num_beams=3, max_new_tokens=50, length_penalty=-1.0),
)
# data settings
data_preprocessor = dict(
type='MultiModalDataPreprocessor',
mean=[122.770938, 116.7460125, 104.09373615],
std=[68.5005327, 66.6321579, 70.32316305],
to_rgb=True,
)
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='Resize',
scale=(image_size, image_size),
interpolation='bicubic',
backend='pillow'),
dict(type='PackInputs', meta_keys=['image_id']),
]
test_dataloader = dict(
batch_size=8,
num_workers=5,
dataset=dict(
type='COCOCaption',
data_root='data/coco',
ann_file='annotations/coco_karpathy_val.json',
pipeline=test_pipeline,
),
sampler=dict(type='DefaultSampler', shuffle=False),
persistent_workers=True,
)
test_evaluator = dict(
type='COCOCaption',
ann_file='data/coco/annotations/coco_karpathy_val_gt.json',
)
# schedule settings
test_cfg = dict()