Skip to content

Commit

Permalink
Create write_operating_reserve_price_revenue.jl (#611)
Browse files Browse the repository at this point in the history
  • Loading branch information
sambuddhac authored Feb 13, 2024
1 parent b2b3987 commit 91d4678
Show file tree
Hide file tree
Showing 5 changed files with 118 additions and 18 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Maintenance formulation for thermal-commit plants (#556).
- Add new tests for GenX: three-zone, multi-stage, electrolyzer, VRE+storage,
piecewise_fuel+CO2, and TDR (#563 and #578).
- Added write_operating_reserve_price_revenue.jl to compute annual operating reserve and regulation revenue.
Added the operating reserve and regulation revenue to net revenue (PR # 611)
- Add functions to compute conflicting constraints when model is infeasible if supported by the solver (#624).
- New settings parameter, VirtualChargeDischargeCost to test script and VREStor example case. The PR 608 attempts to
introduce this parameter as cost of virtual charging and discharging to avoid unusual results (#608).
Expand Down
6 changes: 6 additions & 0 deletions docs/src/write_outputs.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,12 @@ Modules = [GenX]
Pages = ["write_subsidy_revenue.jl"]
```

## Write Operating Reserve and Regulation Revenue
```@autodocs
Modules = [GenX]
Pages = ["write_operating_reserve_price_revenue.jl"]
```

## Write Capacity Revenue
```@autodocs
Modules = [GenX]
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
@doc raw"""
write_operating_reserve_price_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::Model)
Function for reporting the operating reserve and regulation revenue earned by generators listed in the input file.
GenX will print this file only when operating reserve and regulation are modeled and the shadow price can be obtained from the solver.
The revenues are calculated as the operating reserve and regulation contributions in each time step multiplied by the corresponding shadow price, and then the sum is taken over all modeled time steps.
The last column is the total revenue received from all operating reserve and regulation constraints.
As a reminder, GenX models the operating reserve and regulation at the time-dependent level, and each constraint either stands for an overall market or a locality constraint.
"""
function write_operating_reserve_regulation_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::Model)
scale_factor = setup["ParameterScale"] == 1 ? ModelScalingFactor : 1
dfGen = inputs["dfGen"]
RSV = inputs["RSV"]
REG = inputs["REG"]

dfOpRsvRevenue = DataFrame(Region = dfGen[RSV, :region], Resource = dfGen[RSV, :Resource], Zone = dfGen[RSV, :Zone], Cluster = dfGen[RSV, :cluster], AnnualSum = Array{Float64}(undef, length(RSV)),)
dfOpRegRevenue = DataFrame(Region = dfGen[REG, :region], Resource = dfGen[REG, :Resource], Zone = dfGen[REG, :Zone], Cluster = dfGen[REG, :cluster], AnnualSum = Array{Float64}(undef, length(REG)),)

weighted_reg_price = operating_regulation_price(EP, inputs, setup)
weighted_rsv_price = operating_reserve_price(EP, inputs, setup)

rsvrevenue = value.(EP[:vRSV][RSV, :].data) .* transpose(weighted_rsv_price)
regrevenue = value.(EP[:vREG][REG, :].data) .* transpose(weighted_reg_price)

rsvrevenue *= scale_factor
regrevenue *= scale_factor

dfOpRsvRevenue.AnnualSum .= rsvrevenue * inputs["omega"]
dfOpRegRevenue.AnnualSum .= regrevenue * inputs["omega"]

write_simple_csv(joinpath(path, "OperatingReserveRevenue.csv"), dfOpRsvRevenue)
write_simple_csv(joinpath(path, "OperatingRegulationRevenue.csv"), dfOpRegRevenue)
return dfOpRegRevenue, dfOpRsvRevenue
end

@doc raw"""
operating_regulation_price(EP::Model,
inputs::Dict,
setup::Dict)::Vector{Float64}
Operating regulation price for each time step.
This is equal to the dual variable of the regulation requirement constraint.
Returns a vector, with units of $/MW
"""

function operating_regulation_price(EP::Model, inputs::Dict, setup::Dict)::Vector{Float64}
ω = inputs["omega"]
scale_factor = setup["ParameterScale"] == 1 ? ModelScalingFactor : 1
return dual.(EP[:cReg]) ./ ω * scale_factor
end

@doc raw"""
operating_reserve_price(EP::Model,
inputs::Dict,
setup::Dict)::Vector{Float64}
Operating reserve price for each time step.
This is equal to the dual variable of the reserve requirement constraint.
Returns a vector, with units of $/MW
"""

function operating_reserve_price(EP::Model, inputs::Dict, setup::Dict)::Vector{Float64}
ω = inputs["omega"]
scale_factor = setup["ParameterScale"] == 1 ? ModelScalingFactor : 1
return dual.(EP[:cRsvReq]) ./ ω * scale_factor
end
35 changes: 26 additions & 9 deletions src/write_outputs/write_net_revenue.jl
Original file line number Diff line number Diff line change
@@ -1,13 +1,15 @@
@doc raw"""
write_net_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::Model, dfCap::DataFrame, dfESRRev::DataFrame, dfResRevenue::DataFrame, dfChargingcost::DataFrame, dfPower::DataFrame, dfEnergyRevenue::DataFrame, dfSubRevenue::DataFrame, dfRegSubRevenue::DataFrame, dfVreStor::DataFrame)
write_net_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::Model, dfCap::DataFrame, dfESRRev::DataFrame, dfResRevenue::DataFrame, dfChargingcost::DataFrame, dfPower::DataFrame, dfEnergyRevenue::DataFrame, dfSubRevenue::DataFrame, dfRegSubRevenue::DataFrame, dfVreStor::DataFrame, dfOpRegRevenue::DataFrame, dfOpRsvRevenue::DataFrame)
Function for writing net revenue of different generation technologies.
"""
function write_net_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::Model, dfCap::DataFrame, dfESRRev::DataFrame, dfResRevenue::DataFrame, dfChargingcost::DataFrame, dfPower::DataFrame, dfEnergyRevenue::DataFrame, dfSubRevenue::DataFrame, dfRegSubRevenue::DataFrame, dfVreStor::DataFrame)
function write_net_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::Model, dfCap::DataFrame, dfESRRev::DataFrame, dfResRevenue::DataFrame, dfChargingcost::DataFrame, dfPower::DataFrame, dfEnergyRevenue::DataFrame, dfSubRevenue::DataFrame, dfRegSubRevenue::DataFrame, dfVreStor::DataFrame, dfOpRegRevenue::DataFrame, dfOpRsvRevenue::DataFrame)
dfGen = inputs["dfGen"]
T = inputs["T"] # Number of time steps (hours)
Z = inputs["Z"] # Number of zones
G = inputs["G"] # Number of generators
RSV = inputs["RSV"] # Generators contributing to operating reserves
REG = inputs["REG"] # Generators contributing to regulation
COMMIT = inputs["COMMIT"] # Thermal units for unit commitment
STOR_ALL = inputs["STOR_ALL"]
VRE_STOR = inputs["VRE_STOR"]
Expand Down Expand Up @@ -117,33 +119,41 @@ function write_net_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::
end
# Add charge cost to the dataframe
dfNetRevenue.Charge_cost = zeros(nrow(dfNetRevenue))
if has_duals(EP) == 1
if has_duals(EP)
dfNetRevenue.Charge_cost = dfChargingcost[1:G,:AnnualSum] # Unit is confirmed to be US$
end

# Add energy and subsidy revenue to the dataframe
dfNetRevenue.EnergyRevenue = zeros(nrow(dfNetRevenue))
dfNetRevenue.SubsidyRevenue = zeros(nrow(dfNetRevenue))
if has_duals(EP) == 1
if has_duals(EP)
dfNetRevenue.EnergyRevenue = dfEnergyRevenue[1:G,:AnnualSum] # Unit is confirmed to be US$
dfNetRevenue.SubsidyRevenue = dfSubRevenue[1:G,:SubsidyRevenue] # Unit is confirmed to be US$
end

# Add energy and subsidy revenue to the dataframe
dfNetRevenue.OperatingReserveRevenue = zeros(nrow(dfNetRevenue))
dfNetRevenue.OperatingRegulationRevenue = zeros(nrow(dfNetRevenue))
if setup["Reserves"] > 0 && has_duals(EP)
dfNetRevenue.OperatingReserveRevenue[RSV] = dfOpRsvRevenue.AnnualSum # Unit is confirmed to be US$
dfNetRevenue.OperatingRegulationRevenue[REG] = dfOpRegRevenue.AnnualSum # Unit is confirmed to be US$
end

# Add capacity revenue to the dataframe
dfNetRevenue.ReserveMarginRevenue = zeros(nrow(dfNetRevenue))
if setup["CapacityReserveMargin"] > 0 && has_duals(EP) == 1 # The unit is confirmed to be $
if setup["CapacityReserveMargin"] > 0 && has_duals(EP) # The unit is confirmed to be $
dfNetRevenue.ReserveMarginRevenue = dfResRevenue[1:G,:AnnualSum]
end

# Add RPS/CES revenue to the dataframe
dfNetRevenue.ESRRevenue = zeros(nrow(dfNetRevenue))
if setup["EnergyShareRequirement"] > 0 && has_duals(EP) == 1 # The unit is confirmed to be $
if setup["EnergyShareRequirement"] > 0 && has_duals(EP) # The unit is confirmed to be $
dfNetRevenue.ESRRevenue = dfESRRev[1:G,:Total]
end

# Calculate emissions cost
dfNetRevenue.EmissionsCost = zeros(nrow(dfNetRevenue))
if setup["CO2Cap"] >=1 && has_duals(EP) == 1
if setup["CO2Cap"] >=1 && has_duals(EP)
for cap in 1:inputs["NCO2Cap"]
co2_cap_dual = dual(EP[:cCO2Emissions_systemwide][cap])
CO2ZONES = findall(x->x==1, inputs["dfCO2CapZones"][:,cap])
Expand All @@ -166,11 +176,18 @@ function write_net_revenue(path::AbstractString, inputs::Dict, setup::Dict, EP::

# Add regional technology subsidy revenue to the dataframe
dfNetRevenue.RegSubsidyRevenue = zeros(nrow(dfNetRevenue))
if setup["MinCapReq"] >= 1 && has_duals(EP) == 1 # The unit is confirmed to be US$
if setup["MinCapReq"] >= 1 && has_duals(EP)# The unit is confirmed to be US$
dfNetRevenue.RegSubsidyRevenue = dfRegSubRevenue[1:G,:SubsidyRevenue]
end

dfNetRevenue.Revenue = dfNetRevenue.EnergyRevenue .+ dfNetRevenue.SubsidyRevenue .+ dfNetRevenue.ReserveMarginRevenue .+ dfNetRevenue.ESRRevenue .+ dfNetRevenue.RegSubsidyRevenue
dfNetRevenue.Revenue = dfNetRevenue.EnergyRevenue
.+ dfNetRevenue.SubsidyRevenue
.+ dfNetRevenue.ReserveMarginRevenue
.+ dfNetRevenue.ESRRevenue
.+ dfNetRevenue.RegSubsidyRevenue
.+ dfNetRevenue.OperatingReserveRevenue
.+ dfNetRevenue.OperatingRegulationRevenue

dfNetRevenue.Cost = (dfNetRevenue.Inv_cost_MW
.+ dfNetRevenue.Inv_cost_MWh
.+ dfNetRevenue.Inv_cost_charge_MW
Expand Down
25 changes: 16 additions & 9 deletions src/write_outputs/write_outputs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -155,17 +155,17 @@ function write_outputs(EP::Model, path::AbstractString, setup::Dict, inputs::Dic
end

elapsed_time_time_weights = @elapsed write_time_weights(path, inputs)
println("Time elapsed for writing time weights is")
println(elapsed_time_time_weights)
println("Time elapsed for writing time weights is")
println(elapsed_time_time_weights)
dfESR = DataFrame()
dfESRRev = DataFrame()
if setup["EnergyShareRequirement"]==1 && has_duals(EP) == 1
if setup["EnergyShareRequirement"]==1 && has_duals(EP)
dfESR = write_esr_prices(path, inputs, setup, EP)
dfESRRev = write_esr_revenue(path, inputs, setup, dfPower, dfESR, EP)
end
dfResMar = DataFrame()
dfResRevenue = DataFrame()
if setup["CapacityReserveMargin"]==1 && has_duals(EP) == 1
if setup["CapacityReserveMargin"]==1 && has_duals(EP)
dfResMar = write_reserve_margin(path, setup, EP)
elapsed_time_rsv_margin = @elapsed write_reserve_margin_w(path, inputs, setup, EP)
dfVirtualDischarge = write_virtual_discharge(path, inputs, setup, EP)
Expand All @@ -179,26 +179,33 @@ function write_outputs(EP::Model, path::AbstractString, setup::Dict, inputs::Dic
dfResMar_slack = write_reserve_margin_slack(path, inputs, setup, EP)
end
end
if setup["CO2Cap"]>0 && has_duals(EP) == 1

if setup["Reserves"]==1 && has_duals(EP)
elapsed_time_op_res_rev = @elapsed dfOpRegRevenue, dfOpRsvRevenue = write_operating_reserve_regulation_revenue(path, inputs, setup, EP)
println("Time elapsed for writing oerating reserve and regulation revenue is")
println(elapsed_time_op_res_rev)
end

if setup["CO2Cap"]>0 && has_duals(EP)
dfCO2Cap = write_co2_cap(path, inputs, setup, EP)
end
if setup["MinCapReq"] == 1 && has_duals(EP) == 1
if setup["MinCapReq"] == 1 && has_duals(EP)
dfMinCapReq = write_minimum_capacity_requirement(path, inputs, setup, EP)
end

if setup["MaxCapReq"] == 1 && has_duals(EP) == 1
if setup["MaxCapReq"] == 1 && has_duals(EP)
dfMaxCapReq = write_maximum_capacity_requirement(path, inputs, setup, EP)
end

if !isempty(inputs["ELECTROLYZER"]) && has_duals(EP) == 1
if !isempty(inputs["ELECTROLYZER"]) && has_duals(EP)
dfHydrogenPrice = write_hydrogen_prices(path, inputs, setup, EP)
if setup["HydrogenHourlyMatching"] == 1
dfHourlyMatchingPrices = write_hourly_matching_prices(path, inputs, setup, EP)
end
end


elapsed_time_net_rev = @elapsed write_net_revenue(path, inputs, setup, EP, dfCap, dfESRRev, dfResRevenue, dfChargingcost, dfPower, dfEnergyRevenue, dfSubRevenue, dfRegSubRevenue, dfVreStor)
elapsed_time_net_rev = @elapsed write_net_revenue(path, inputs, setup, EP, dfCap, dfESRRev, dfResRevenue, dfChargingcost, dfPower, dfEnergyRevenue, dfSubRevenue, dfRegSubRevenue, dfVreStor, dfOpRegRevenue, dfOpRsvRevenue)
println("Time elapsed for writing net revenue is")
println(elapsed_time_net_rev)
end
Expand Down

0 comments on commit 91d4678

Please sign in to comment.