Skip to content

Commit

Permalink
Add method to calculate locational marginal prices (#582)
Browse files Browse the repository at this point in the history
  • Loading branch information
cfe316 authored Nov 22, 2023
1 parent 861c714 commit 32b3836
Show file tree
Hide file tree
Showing 3 changed files with 34 additions and 13 deletions.
16 changes: 9 additions & 7 deletions src/write_outputs/write_charging_cost.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,25 +7,27 @@ function write_charging_cost(path::AbstractString, inputs::Dict, setup::Dict, EP
ELECTROLYZER = inputs["ELECTROLYZER"]
VRE_STOR = inputs["VRE_STOR"]
VS_STOR = !isempty(VRE_STOR) ? inputs["VS_STOR"] : []


price = locational_marginal_price(EP, inputs, setup)

dfChargingcost = DataFrame(Region = dfGen[!, :region], Resource = inputs["RESOURCES"], Zone = dfGen[!, :Zone], Cluster = dfGen[!, :cluster], AnnualSum = Array{Float64}(undef, G),)
chargecost = zeros(G, T)
if !isempty(STOR_ALL)
chargecost[STOR_ALL, :] .= (value.(EP[:vCHARGE][STOR_ALL, :]).data) .* transpose(dual.(EP[:cPowerBalance]) ./ inputs["omega"])[dfGen[STOR_ALL, :Zone], :]
chargecost[STOR_ALL, :] .= (value.(EP[:vCHARGE][STOR_ALL, :]).data) .* transpose(price)[dfGen[STOR_ALL, :Zone], :]
end
if !isempty(FLEX)
chargecost[FLEX, :] .= value.(EP[:vP][FLEX, :]) .* transpose(dual.(EP[:cPowerBalance]) ./ inputs["omega"])[dfGen[FLEX, :Zone], :]
chargecost[FLEX, :] .= value.(EP[:vP][FLEX, :]) .* transpose(price)[dfGen[FLEX, :Zone], :]
end
if !isempty(ELECTROLYZER)
chargecost[ELECTROLYZER, :] .= (value.(EP[:vUSE][ELECTROLYZER, :]).data) .* transpose(dual.(EP[:cPowerBalance]) ./ inputs["omega"])[dfGen[ELECTROLYZER, :Zone], :]
chargecost[ELECTROLYZER, :] .= (value.(EP[:vUSE][ELECTROLYZER, :]).data) .* transpose(price)[dfGen[ELECTROLYZER, :Zone], :]
end
if !isempty(VS_STOR)
chargecost[VS_STOR, :] .= value.(EP[:vCHARGE_VRE_STOR][VS_STOR, :].data) .* transpose(dual.(EP[:cPowerBalance]) ./ inputs["omega"])[dfGen[VS_STOR, :Zone], :]
chargecost[VS_STOR, :] .= value.(EP[:vCHARGE_VRE_STOR][VS_STOR, :].data) .* transpose(price)[dfGen[VS_STOR, :Zone], :]
end
if setup["ParameterScale"] == 1
chargecost *= ModelScalingFactor^2
chargecost *= ModelScalingFactor
end
dfChargingcost.AnnualSum .= chargecost * inputs["omega"]
CSV.write(joinpath(path, "ChargingCost.csv"), dfChargingcost)
write_simple_csv(joinpath(path, "ChargingCost.csv"), dfChargingcost)
return dfChargingcost
end
9 changes: 5 additions & 4 deletions src/write_outputs/write_energy_revenue.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,15 @@ function write_energy_revenue(path::AbstractString, inputs::Dict, setup::Dict, E
NONFLEX = setdiff(collect(1:G), FLEX)
dfEnergyRevenue = DataFrame(Region = dfGen.region, Resource = inputs["RESOURCES"], Zone = dfGen.Zone, Cluster = dfGen.cluster, AnnualSum = Array{Float64}(undef, G),)
energyrevenue = zeros(G, T)
energyrevenue[NONFLEX, :] = value.(EP[:vP][NONFLEX, :]) .* transpose(dual.(EP[:cPowerBalance]) ./ inputs["omega"])[dfGen[NONFLEX, :Zone], :]
price = locational_marginal_price(EP, inputs, setup)
energyrevenue[NONFLEX, :] = value.(EP[:vP][NONFLEX, :]) .* transpose(price)[dfGen[NONFLEX, :Zone], :]
if !isempty(FLEX)
energyrevenue[FLEX, :] = value.(EP[:vCHARGE_FLEX][FLEX, :]).data .* transpose(dual.(EP[:cPowerBalance]) ./ inputs["omega"])[dfGen[FLEX, :Zone], :]
energyrevenue[FLEX, :] = value.(EP[:vCHARGE_FLEX][FLEX, :]).data .* transpose(price)[dfGen[FLEX, :Zone], :]
end
if setup["ParameterScale"] == 1
energyrevenue *= ModelScalingFactor^2
energyrevenue *= ModelScalingFactor
end
dfEnergyRevenue.AnnualSum .= energyrevenue * inputs["omega"]
CSV.write(joinpath(path, "EnergyRevenue.csv"), dfEnergyRevenue)
write_simple_csv(joinpath(path, "EnergyRevenue.csv"), dfEnergyRevenue)
return dfEnergyRevenue
end
22 changes: 20 additions & 2 deletions src/write_outputs/write_price.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,9 @@ function write_price(path::AbstractString, inputs::Dict, setup::Dict, EP::Model)
## Extract dual variables of constraints
# Electricity price: Dual variable of hourly power balance constraint = hourly price
dfPrice = DataFrame(Zone = 1:Z) # The unit is $/MWh
scale_factor = setup["ParameterScale"] == 1 ? ModelScalingFactor : 1
# Dividing dual variable for each hour with corresponding hourly weight to retrieve marginal cost of generation
dfPrice = hcat(dfPrice, DataFrame(transpose(dual.(EP[:cPowerBalance])./inputs["omega"]*scale_factor), :auto))
price = locational_marginal_price(EP, inputs, setup)
dfPrice = hcat(dfPrice, DataFrame(transpose(price), :auto))

auxNew_Names=[Symbol("Zone");[Symbol("t$t") for t in 1:T]]
rename!(dfPrice,auxNew_Names)
Expand All @@ -21,3 +21,21 @@ function write_price(path::AbstractString, inputs::Dict, setup::Dict, EP::Model)
CSV.write(joinpath(path, "prices.csv"), dftranspose(dfPrice, false), writeheader=false)
return dfPrice
end

@doc raw"""
locational_marginal_price(EP::Model, inputs::Dict, setup::Dict)
Marginal electricity price for each model zone and time step.
This is equal to the dual variable of the power balance constraint.
When solving a linear program (i.e. linearized unit commitment or economic dispatch)
this output is always available; when solving a mixed integer linear program, this can
be calculated only if `WriteShadowPrices` is activated.
Returns a matrix of size (T, Z).
Values have units of $/MWh
"""
function locational_marginal_price(EP::Model, inputs::Dict, setup::Dict)::Matrix{Float64}
ω = inputs["omega"]
scale_factor = setup["ParameterScale"] == 1 ? ModelScalingFactor : 1
return dual.(EP[:cPowerBalance]) ./ ω * scale_factor
end

0 comments on commit 32b3836

Please sign in to comment.