Skip to content

Gabe-YHLee/MMLfD-Tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Motion Manifold Learning from Demonstration (MMLfD) Tutorial

This repository includes codes for generating figures and videos used in YH's tutoral talk on A Geometric Take on Motion Manifold Learning from Demonstration at Riemann and Gauss meet Asimov: 2nd Tutorial on Geometric Methods in Robot Learning, Optimization and Control in ICRA 2024.

Presentation slides

PDF

Trained models

You can download pre-trained models from HERE. Put these files in the directory MMLfD-Tutorial/results/.

References

Geometric aspects on autoencoders

  • The Riemannian Geometry of Deep Generative Models (Shao et al., CVPR workshops 2018)
  • Latent Space Oddity: on the Curvature of Deep Generative Models (Arvanitidis et al., ICLR 2018)
  • Learning Flat Latent Manifolds with VAEs (Chen et al., ICML 2020)
  • Geometrically Enriched Latent Spaces (Arvanitidis et al., AISTATS 2021)
  • Neighborhood Reconstructing Autoencoders (Lee et al., NeurIPS 2021)
  • Pulling back information geometry (Arvanitidis et al., AISTATS 2022)
  • Regularized Autoencoders for Isometric Representation Learning (Lee et al., ICLR 2022)
  • A Statistical Manifold Framework for Point Cloud Data (Lee et al., ICML 2022)
  • Geometric Autoencoders – What You See is What You Decode (Nazari., ICML 2023)
  • On Explicit Curvature Regularization of Deep Generative Models (Lee et al., TAG-ML 2023)
  • Geometrically regularized autoencoders for non-Euclidean data (Jang et al., ICLR 2023)

Motion manifold primitives

  • Task-Conditioned Variational Autoencoders for Learning Movement Primitives (Noseworthy et al., CoRL 2019)
  • Equivariant Motion Manifold Primitives (Lee et al., CoRL 2023)
  • MMP++: Motion Manifold Primitives with Parametric Curve Models (Lee et al., Arxiv 2024)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published