Skip to content

Benchmarking tests

Benchmarking tests #2

Workflow file for this run

name: Benchmarking tests
on:
workflow_dispatch:
schedule:
- cron: "30 1 1,15 * *" # every 2 weeks on the 1st and the 15th of every month at 1:30 AM
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
jobs:
torch_pipelines_cuda_benchmark_tests:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_BENCHMARK }}
name: Torch Core Pipelines CUDA Benchmarking Tests
strategy:
fail-fast: false
max-parallel: 1
runs-on:
group: aws-g6-4xlarge-plus
container:
image: diffusers/diffusers-pytorch-compile-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install pandas peft
- name: Environment
run: |
python utils/print_env.py
- name: Diffusers Benchmarking
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_BOT_TOKEN }}
BASE_PATH: benchmark_outputs
run: |
export TOTAL_GPU_MEMORY=$(python -c "import torch; print(torch.cuda.get_device_properties(0).total_memory / (1024**3))")
cd benchmarks && mkdir ${BASE_PATH} && python run_all.py && python push_results.py
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: benchmark_test_reports
path: benchmarks/benchmark_outputs
- name: Report success status
if: ${{ success() }}
run: |
pip install requests && python utils/notify_benchmarking_status.py --status=success
- name: Report failure status
if: ${{ failure() }}
run: |
pip install requests && python utils/notify_benchmarking_status.py --status=failure