Contributors welcomed.
轻量级多语言模型异步聊天机器人框架。
- 全异步高并发设计
- 尽量简单的 API 设计
- 管理对话数据和向量数据
pip install -U llm-kira
Init
import llm_kira
llm_kira.setting.redisSetting = llm_kira.setting.RedisConfig(host="localhost",
port=6379,
db=0,
password=None)
llm_kira.setting.dbFile = "client_memory.db"
llm_kira.setting.proxyUrl = None # "127.0.0.1"
# Plugin
llm_kira.setting.webServerUrlFilter = False
llm_kira.setting.webServerStopSentence = ["广告", "营销号"] # 有默认值
!! More examples of use in test/test.py
.
Take openai
as an example
import asyncio
import random
import llm_kira
from llm_kira.creator import Optimizer
from llm_kira.types import PromptItem, Interaction
from llm_kira.llms import OpenAiParam
from typing import List
openaiApiKey = ["key1", "key2"]
openaiApiKey: List[str]
receiver = llm_kira.client
conversation = receiver.Conversation(
start_name="Human:",
restart_name="AI:",
conversation_id=10093, # random.randint(1, 10000000),
)
llm = llm_kira.client.llms.OpenAi(
profile=conversation,
api_key=openaiApiKey,
token_limit=3700,
auto_penalty=False,
call_func=None,
)
mem = receiver.MemoryManager(profile=conversation)
chat_client = receiver.ChatBot(profile=conversation,
llm_model=llm
)
async def chat():
promptManager = llm_kira.creator.PromptEngine(
reverse_prompt_buffer=False, # 设定是首条还是末尾的 prompt 当 input
profile=conversation,
connect_words="\n",
memory_manger=mem,
llm_model=llm,
description="这是一段对话", # 推荐在这里进行强注入
reference_ratio=0.5,
forget_words=["忘掉对话"],
optimizer=Optimizer.SinglePoint,
)
# 第三人称
promptManager.insert_prompt(prompt=PromptItem(start="Neko", text="喵喵喵"))
# 直接添加
promptManager.insert_interaction(Interaction(single=True, ask=PromptItem(start="Neko", text="MewMewMewMew")))
# 添加交互
promptManager.insert_interaction(Interaction(single=False,
ask=PromptItem(start="Neko", text="MewMewMewMew"),
reply=PromptItem(start="Neko", text="MewMewMewMew"))
)
# 添加新内容
promptManager.insert_prompt(prompt=PromptItem(start=conversation.start_name, text=input("TestPrompt:")))
response = await chat_client.predict(
prompt=promptManager,
llm_param=OpenAiParam(model_name="text-davinci-003", temperature=0.8, presence_penalty=0.1, n=1, best_of=1),
predict_tokens=1000,
)
print(f"id {response.conversation_id}")
print(f"ask {response.ask}")
print(f"reply {response.reply}")
print(f"usage:{response.llm.usage}")
print(f"usage:{response.llm.raw}")
print(f"---{response.llm.time}---")
promptManager.clean(clean_prompt=True, clean_knowledge=False, clean_memory=False)
promptManager.insert_prompt(prompt=PromptItem(start=conversation.start_name, text='今天天气怎么样'))
response = await chat_client.predict(llm_param=OpenAiParam(model_name="text-davinci-003"),
prompt=promptManager,
predict_tokens=500,
# parse_reply=None
)
_info = "parse_reply 函数回调会处理 llm 的回复字段,比如 list 等,传入list,传出 str 的回复。必须是 str。"
_info2 = "The parse_reply function callback handles the reply fields of llm, such as list, etc. Pass in list and pass out str for the reply."
print(f"id {response.conversation_id}")
print(f"ask {response.ask}")
print(f"reply {response.reply}")
print(f"usage:{response.llm.usage}")
print(f"usage:{response.llm.raw}")
print(f"---{response.llm.time}---")
asyncio.run(chat())
import llm_kira
from llm_kira.creator.think import ThinkEngine, Hook
conversation = llm_kira.client.Conversation(
start_name="Human:",
restart_name="AI:",
conversation_id=10093, # random.randint(1, 10000000),
)
_think = ThinkEngine(profile=conversation)
_think.register_hook(Hook(name="happy", trigger="happy", value=2, last=60, time=int(time.time()))) # 60s
# Hook
_think.hook("happy")
print(_think.hook_pool)
print(_think.build_status(rank=5))
# rank=sum(value,value,value)
├── client
│ ├── agent.py // 基本类
│ ├── anchor.py // 代理端
│ ├── enhance.py // 外部接口方法
│ ├── __init__.py
│ ├── llms // 大语言模型类
│ ├── module // 注入模组
│ ├── Optimizer.py // 优化器
│ ├── test //测试
│ ├── text_analysis_tools
│ ├── types.py // 类型
│ └── vocab.json
├── creator // 提示构建引擎
│ ├── engine.py
│ ├── __init__.py
├── error.py // 通用错误类型
├── __init__.py //主入口
├── radio // 外部通信类型,知识池
│ ├── anchor.py
│ ├── crawer.py
│ ├── decomposer.py
│ └── setting.py
├── requirements.txt
├── tool // LLM 工具类型
│ ├── __init__.py
│ ├── openai
└── utils // 工具类型/语言探测
├── chat.py
├── data.py
├── fatlangdetect
├── langdetect
├── network.py
└── setting.py