Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove @adjoint function cholesky #1114

Merged
merged 13 commits into from
Jun 20, 2022
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ ZygoteRules = "700de1a5-db45-46bc-99cf-38207098b444"

[compat]
AbstractFFTs = "0.5, 1.0"
ChainRules = "1.5"
ChainRules = "1.35.3"
ChainRulesCore = "1.9"
ChainRulesTestUtils = "1"
DiffRules = "1.4"
Expand All @@ -38,7 +38,7 @@ NaNMath = "0.3, 1"
Requires = "1.1"
SpecialFunctions = "1.6, 2"
ZygoteRules = "0.2.1"
julia = "1.3"
julia = "1.6"

[extras]
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
Expand Down
29 changes: 0 additions & 29 deletions src/lib/array.jl
Original file line number Diff line number Diff line change
Expand Up @@ -564,35 +564,6 @@ end
@adjoint Matrix(A::LinearAlgebra.HermOrSym{T,S}) where {T,S} = Matrix(A),
Δ -> (convert(S, Δ),)

@adjoint function cholesky(Σ::Real)
C = cholesky(Σ)
return C, Δ::NamedTuple->(Δ.factors[1, 1] / (2 * C.U[1, 1]),)
end

@adjoint function cholesky(Σ::Diagonal; check = true)
C = cholesky(Σ, check = check)
return C, Δ::NamedTuple -> begin
issuccess(C) || throw(PosDefException(C.info))
return Diagonal(diag(Δ.factors) .* inv.(2 .* C.factors.diag)), nothing
end
end

# Implementation due to Seeger, Matthias, et al. "Auto-differentiating linear algebra."
@adjoint function cholesky(Σ::Union{StridedMatrix, Symmetric{<:Real, <:StridedMatrix}}; check = true)
C = cholesky(Σ, check = check)
return C, function(Δ::NamedTuple)
issuccess(C) || throw(PosDefException(C.info))
U, Ū = C.U, Δ.factors
Σ̄ = similar(U.data)
Σ̄ = mul!(Σ̄, Ū, U')
Σ̄ = copytri!(Σ̄, 'U')
Σ̄ = ldiv!(U, Σ̄)
Σ̄ = BLAS.trsm!('R', 'U', 'T', 'N', one(eltype(Σ)), U.data, Σ̄)
Σ̄[diagind(Σ̄)] ./= 2
return (UpperTriangular(Σ̄),)
end
end

@adjoint function lyap(A::AbstractMatrix, C::AbstractMatrix)
X = lyap(A, C)
return X, function (X̄)
Expand Down
13 changes: 12 additions & 1 deletion test/gradcheck.jl
Original file line number Diff line number Diff line change
Expand Up @@ -654,7 +654,6 @@ end
g(X) = cholesky(X * X' + I)
@test Zygote.pullback(g, X)[2]((factors=LowerTriangular(X),))[1] ≈
Zygote.pullback(g, X)[2]((factors=Matrix(LowerTriangular(X)),))[1]
@test_throws PosDefException Zygote.pullback(X -> cholesky(X, check = false), X)[2]((factors=X,))

# https://github.com/FluxML/Zygote.jl/issues/932
@test gradcheck(rand(5, 5), rand(5)) do A, x
Expand Down Expand Up @@ -820,6 +819,18 @@ end
@test back′(C̄)[1] isa Diagonal
@test diag(back′(C̄)[1]) ≈ diag(back(C̄)[1])
end
@testset "cholesky - Hermitian" begin
rng, N = MersenneTwister(123456), 3
A = randn(rng, N, N) + im * randn(rng, N, N)
st-- marked this conversation as resolved.
Show resolved Hide resolved
H = Hermitian(A * A' + I)
Hmat = Matrix(H)
y, back = Zygote.pullback(cholesky, Hmat)
y′, back′ = Zygote.pullback(cholesky, H)
C̄ = (factors=randn(rng, N, N),)
@test back′(C̄)[1] isa Hermitian
@test gradtest(B->cholesky(Hermitian(B)).U, A * A' + I)
@test gradtest(B->logdet(cholesky(Hermitian(B))), A * A' + I)
end
end

@testset "lyap" begin
Expand Down