-
-
Notifications
You must be signed in to change notification settings - Fork 609
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* start testing * add tests for Enzyme * update runtests * comparison with finitedifferences * cl/enzyme * tests passing * cleanup * add FiniteDifferences to extra * check_grad -> test_grad
- Loading branch information
1 parent
d811e8b
commit 9b9f950
Showing
3 changed files
with
197 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
using Test | ||
using Flux | ||
|
||
using Enzyme | ||
using Functors | ||
using FiniteDifferences | ||
using CUDA | ||
|
||
Enzyme.API.typeWarning!(false) # suppresses a warning with Bilinear https://github.com/EnzymeAD/Enzyme.jl/issues/1341 | ||
Enzyme.API.runtimeActivity!(true) # for Enzyme debugging | ||
# Enzyme.Compiler.bitcode_replacement!(false) | ||
|
||
_make_zero(x::Union{Number,AbstractArray}) = zero(x) | ||
_make_zero(x) = x | ||
make_zero(model) = fmap(_make_zero, model) | ||
## make_differential(model) = fmapstructure(make_zero, model) # NOT SUPPORTED, See https://github.com/EnzymeAD/Enzyme.jl/issues/1329 | ||
|
||
function gradient_fd(f, x...) | ||
x = [cpu(x) for x in x] | ||
ps_and_res = [x isa AbstractArray ? (x, identity) : Flux.destructure(x) for x in x] | ||
ps = [f64(x[1]) for x in ps_and_res] | ||
res = [x[2] for x in ps_and_res] | ||
fdm = FiniteDifferences.central_fdm(5, 1) | ||
gs = FiniteDifferences.grad(fdm, (ps...) -> f((re(p) for (p,re) in zip(ps, res))...), ps...) | ||
return ((re(g) for (re, g) in zip(res, gs))...,) | ||
end | ||
|
||
function gradient_ez(f, x...) | ||
args = [] | ||
for x in x | ||
if x isa Number | ||
push!(args, Active(x)) | ||
else | ||
push!(args, Duplicated(x, make_zero(x))) | ||
end | ||
end | ||
ret = Enzyme.autodiff(ReverseWithPrimal, f, Active, args...) | ||
g = ntuple(i -> x[i] isa Number ? ret[1][i] : args[i].dval, length(x)) | ||
return g | ||
end | ||
|
||
function test_grad(g1, g2; broken=false) | ||
fmap_with_path(g1, g2) do kp, x, y | ||
:state ∈ kp && return # ignore RNN and LSTM state | ||
if x isa AbstractArray{<:Number} | ||
# @show kp | ||
@test x ≈ y rtol=1e-2 atol=1e-6 broken=broken | ||
end | ||
return x | ||
end | ||
end | ||
|
||
function test_enzyme_grad(loss, model, x) | ||
Flux.trainmode!(model) | ||
l = loss(model, x) | ||
@test loss(model, x) == l # Check loss doesn't change with multiple runs | ||
|
||
grads_fd = gradient_fd(loss, model, x) |> cpu | ||
grads_flux = Flux.gradient(loss, model, x) |> cpu | ||
grads_enzyme = gradient_ez(loss, model, x) |> cpu | ||
|
||
# test_grad(grads_flux, grads_enzyme) | ||
test_grad(grads_fd, grads_enzyme) | ||
end | ||
|
||
@testset "gradient_ez" begin | ||
@testset "number and arrays" begin | ||
f(x, y) = sum(x.^2) + y^3 | ||
x = Float32[1, 2, 3] | ||
y = 3f0 | ||
g = gradient_ez(f, x, y) | ||
@test g[1] isa Array{Float32} | ||
@test g[2] isa Float32 | ||
@test g[1] ≈ 2x | ||
@test g[2] ≈ 3*y^2 | ||
end | ||
|
||
@testset "struct" begin | ||
struct SimpleDense{W, B, F} | ||
weight::W | ||
bias::B | ||
σ::F | ||
end | ||
SimpleDense(in::Integer, out::Integer; σ=identity) = SimpleDense(randn(Float32, out, in), zeros(Float32, out), σ) | ||
(m::SimpleDense)(x) = m.σ.(m.weight * x .+ m.bias) | ||
@functor SimpleDense | ||
|
||
model = SimpleDense(2, 4) | ||
x = randn(Float32, 2) | ||
loss(model, x) = sum(model(x)) | ||
|
||
g = gradient_ez(loss, model, x) | ||
@test g[1] isa SimpleDense | ||
@test g[2] isa Array{Float32} | ||
@test g[1].weight isa Array{Float32} | ||
@test g[1].bias isa Array{Float32} | ||
@test g[1].weight ≈ ones(Float32, 4, 1) .* x' | ||
@test g[1].bias ≈ ones(Float32, 4) | ||
end | ||
end | ||
|
||
@testset "Models" begin | ||
function loss(model, x) | ||
Flux.reset!(model) | ||
sum(model(x)) | ||
end | ||
|
||
models_xs = [ | ||
(Dense(2, 4), randn(Float32, 2), "Dense"), | ||
(Chain(Dense(2, 4, relu), Dense(4, 3)), randn(Float32, 2), "Chain(Dense, Dense)"), | ||
(f64(Chain(Dense(2, 4), Dense(4, 2))), randn(Float64, 2, 1), "f64(Chain(Dense, Dense))"), | ||
(Flux.Scale([1.0f0 2.0f0 3.0f0 4.0f0], true, abs2), randn(Float32, 2), "Flux.Scale"), | ||
(Conv((3, 3), 2 => 3), randn(Float32, 3, 3, 2, 1), "Conv"), | ||
(Chain(Conv((3, 3), 2 => 3, relu), Conv((3, 3), 3 => 1, relu)), rand(Float32, 5, 5, 2, 1), "Chain(Conv, Conv)"), | ||
(Chain(Conv((4, 4), 2 => 2, pad=SamePad()), MeanPool((5, 5), pad=SamePad())), rand(Float32, 5, 5, 2, 2), "Chain(Conv, MeanPool)"), | ||
(Maxout(() -> Dense(5 => 4, tanh), 3), randn(Float32, 5, 1), "Maxout"), | ||
(RNN(3 => 2), randn(Float32, 3, 2), "RNN"), | ||
(Chain(RNN(3 => 4), RNN(4 => 3)), randn(Float32, 3, 2), "Chain(RNN, RNN)"), | ||
(LSTM(3 => 5), randn(Float32, 3, 2), "LSTM"), | ||
(Chain(LSTM(3 => 5), LSTM(5 => 3)), randn(Float32, 3, 2), "Chain(LSTM, LSTM)"), | ||
(SkipConnection(Dense(2 => 2), vcat), randn(Float32, 2, 3), "SkipConnection"), | ||
(Flux.Bilinear((2, 2) => 3), randn(Float32, 2, 1), "Bilinear"), | ||
] | ||
|
||
for (model, x, name) in models_xs | ||
@testset "check grad $name" begin | ||
println("testing $name") | ||
test_enzyme_grad(loss, model, x) | ||
end | ||
end | ||
end | ||
|
||
@testset "Recurrence Tests" begin | ||
function loss(model, x) | ||
Flux.reset!(model) | ||
for i in 1:3 | ||
x = model(x) | ||
end | ||
return sum(x) | ||
end | ||
|
||
models_xs = [ | ||
(RNN(3 => 3), randn(Float32, 3, 2), "RNN"), | ||
(LSTM(3 => 3), randn(Float32, 3, 2), "LSTM"), | ||
# TESTS BELOW ARE BROKEN FOR ZYGOTE BUT CORRECT FOR ENZYME! | ||
(Chain(RNN(3 => 5), RNN(5 => 3)), randn(Float32, 3, 2), "Chain(RNN, RNN)"), | ||
(Chain(LSTM(3 => 5), LSTM(5 => 3)), randn(Float32, 3, 2), "Chain(LSTM, LSTM)"), | ||
] | ||
|
||
for (model, x, name) in models_xs | ||
@testset "check grad $name" begin | ||
println("testing $name") | ||
test_enzyme_grad(loss, model, x) | ||
end | ||
end | ||
end | ||
|
||
@testset "Broken Models" begin | ||
function loss(model, x) | ||
Flux.reset!(model) | ||
sum(model(x)) | ||
end | ||
|
||
device = Flux.get_device() | ||
|
||
models_xs = [ | ||
(GRU(3 => 5), randn(Float32, 3, 10), "GRU"), | ||
(ConvTranspose((3, 3), 3 => 2, stride=2), rand(Float32, 5, 5, 3, 1), "ConvTranspose"), | ||
] | ||
|
||
for (model, x, name) in models_xs | ||
@testset "check grad $name" begin | ||
println("testing $name") | ||
broken = false | ||
try | ||
test_enzyme_grad(loss, model, x) | ||
catch e | ||
println(e) | ||
broken = true | ||
end | ||
@test broken | ||
end | ||
end | ||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters