forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix Baichuan tokenizer error (vllm-project#1874)
- Loading branch information
1 parent
66785cc
commit d06980d
Showing
3 changed files
with
281 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
from vllm.transformers_utils.tokenizers.baichuan import BaichuanTokenizer | ||
|
||
__all__ = [ | ||
"BaichuanTokenizer", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
# yapf: disable | ||
# Adapted from | ||
# https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/8f6e343d545c503b91429582231d1d354dac2740/tokenization_baichuan.py | ||
# This includes a fix suggested in | ||
# https://github.com/vllm-project/vllm/issues/1403#issuecomment-1767503058 | ||
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved. | ||
|
||
import os | ||
from shutil import copyfile | ||
from typing import Any, Dict, List, Optional, Tuple | ||
|
||
import sentencepiece as spm | ||
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | ||
from transformers.utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} | ||
|
||
PRETRAINED_VOCAB_FILES_MAP = { | ||
"vocab_file": {}, | ||
"tokenizer_file": {}, | ||
} | ||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} | ||
|
||
|
||
class BaichuanTokenizer(PreTrainedTokenizer): | ||
""" | ||
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding. | ||
Args: | ||
vocab_file (`str`): | ||
Path to the vocabulary file. | ||
""" | ||
|
||
vocab_files_names = VOCAB_FILES_NAMES | ||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | ||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | ||
model_input_names = ["input_ids", "attention_mask"] | ||
|
||
def __init__( | ||
self, | ||
vocab_file, | ||
unk_token="<unk>", | ||
bos_token="<s>", | ||
eos_token="</s>", | ||
pad_token=None, | ||
sp_model_kwargs: Optional[Dict[str, Any]] = None, | ||
add_bos_token=True, | ||
add_eos_token=False, | ||
clean_up_tokenization_spaces=False, | ||
**kwargs, | ||
): | ||
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | ||
bos_token = ( | ||
AddedToken(bos_token, lstrip=False, rstrip=False) | ||
if isinstance(bos_token, str) | ||
else bos_token | ||
) | ||
eos_token = ( | ||
AddedToken(eos_token, lstrip=False, rstrip=False) | ||
if isinstance(eos_token, str) | ||
else eos_token | ||
) | ||
unk_token = ( | ||
AddedToken(unk_token, lstrip=False, rstrip=False) | ||
if isinstance(unk_token, str) | ||
else unk_token | ||
) | ||
pad_token = ( | ||
AddedToken(pad_token, lstrip=False, rstrip=False) | ||
if isinstance(pad_token, str) | ||
else pad_token | ||
) | ||
self.vocab_file = vocab_file | ||
self.add_bos_token = add_bos_token | ||
self.add_eos_token = add_eos_token | ||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | ||
self.sp_model.Load(vocab_file) | ||
super().__init__( | ||
bos_token=bos_token, | ||
eos_token=eos_token, | ||
unk_token=unk_token, | ||
pad_token=pad_token, | ||
add_bos_token=add_bos_token, | ||
add_eos_token=add_eos_token, | ||
sp_model_kwargs=self.sp_model_kwargs, | ||
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | ||
**kwargs, | ||
) | ||
|
||
def __getstate__(self): | ||
state = self.__dict__.copy() | ||
state["sp_model"] = None | ||
return state | ||
|
||
def __setstate__(self, d): | ||
self.__dict__ = d | ||
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | ||
self.sp_model.Load(self.vocab_file) | ||
|
||
@property | ||
def vocab_size(self): | ||
"""Returns vocab size""" | ||
return self.sp_model.get_piece_size() | ||
|
||
def get_vocab(self): | ||
"""Returns vocab as a dict""" | ||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | ||
vocab.update(self.added_tokens_encoder) | ||
return vocab | ||
|
||
def _tokenize(self, text): | ||
"""Returns a tokenized string.""" | ||
return self.sp_model.encode(text, out_type=str) | ||
|
||
def _convert_token_to_id(self, token): | ||
"""Converts a token (str) in an id using the vocab.""" | ||
return self.sp_model.piece_to_id(token) | ||
|
||
def _convert_id_to_token(self, index): | ||
"""Converts an index (integer) in a token (str) using the vocab.""" | ||
token = self.sp_model.IdToPiece(index) | ||
return token | ||
|
||
def convert_tokens_to_string(self, tokens): | ||
"""Converts a sequence of tokens (string) in a single string.""" | ||
current_sub_tokens = [] | ||
out_string = "" | ||
prev_is_special = False | ||
for i, token in enumerate(tokens): | ||
# make sure that special tokens are not decoded using sentencepiece model | ||
if token in self.all_special_tokens: | ||
if not prev_is_special and i != 0: | ||
out_string += " " | ||
out_string += self.sp_model.decode(current_sub_tokens) + token | ||
prev_is_special = True | ||
current_sub_tokens = [] | ||
else: | ||
current_sub_tokens.append(token) | ||
prev_is_special = False | ||
out_string += self.sp_model.decode(current_sub_tokens) | ||
return out_string | ||
|
||
def save_vocabulary( | ||
self, save_directory, filename_prefix: Optional[str] = None | ||
) -> Tuple[str]: | ||
""" | ||
Save the vocabulary and special tokens file to a directory. | ||
Args: | ||
save_directory (`str`): | ||
The directory in which to save the vocabulary. | ||
Returns: | ||
`Tuple(str)`: Paths to the files saved. | ||
""" | ||
if not os.path.isdir(save_directory): | ||
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | ||
return | ||
out_vocab_file = os.path.join( | ||
save_directory, | ||
(filename_prefix + "-" if filename_prefix else "") | ||
+ VOCAB_FILES_NAMES["vocab_file"], | ||
) | ||
|
||
if os.path.abspath(self.vocab_file) != os.path.abspath( | ||
out_vocab_file | ||
) and os.path.isfile(self.vocab_file): | ||
copyfile(self.vocab_file, out_vocab_file) | ||
elif not os.path.isfile(self.vocab_file): | ||
with open(out_vocab_file, "wb") as fi: | ||
content_spiece_model = self.sp_model.serialized_model_proto() | ||
fi.write(content_spiece_model) | ||
|
||
return (out_vocab_file,) | ||
|
||
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | ||
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | ||
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | ||
|
||
output = bos_token_id + token_ids_0 + eos_token_id | ||
|
||
if token_ids_1 is not None: | ||
output = output + bos_token_id + token_ids_1 + eos_token_id | ||
|
||
return output | ||
|
||
def get_special_tokens_mask( | ||
self, | ||
token_ids_0: List[int], | ||
token_ids_1: Optional[List[int]] = None, | ||
already_has_special_tokens: bool = False, | ||
) -> List[int]: | ||
""" | ||
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | ||
special tokens using the tokenizer `prepare_for_model` method. | ||
Args: | ||
token_ids_0 (`List[int]`): | ||
List of IDs. | ||
token_ids_1 (`List[int]`, *optional*): | ||
Optional second list of IDs for sequence pairs. | ||
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | ||
Whether or not the token list is already formatted with special tokens for the model. | ||
Returns: | ||
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | ||
""" | ||
if already_has_special_tokens: | ||
return super().get_special_tokens_mask( | ||
token_ids_0=token_ids_0, | ||
token_ids_1=token_ids_1, | ||
already_has_special_tokens=True, | ||
) | ||
|
||
bos_token_id = [1] if self.add_bos_token else [] | ||
eos_token_id = [1] if self.add_eos_token else [] | ||
|
||
if token_ids_1 is None: | ||
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id | ||
return ( | ||
bos_token_id | ||
+ ([0] * len(token_ids_0)) | ||
+ eos_token_id | ||
+ bos_token_id | ||
+ ([0] * len(token_ids_1)) | ||
+ eos_token_id | ||
) | ||
|
||
def create_token_type_ids_from_sequences( | ||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | ||
) -> List[int]: | ||
""" | ||
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT | ||
sequence pair mask has the following format: | ||
``` | ||
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | ||
| first sequence | second sequence | | ||
``` | ||
if token_ids_1 is None, only returns the first portion of the mask (0s). | ||
Args: | ||
token_ids_0 (`List[int]`): | ||
List of ids. | ||
token_ids_1 (`List[int]`, *optional*): | ||
Optional second list of IDs for sequence pairs. | ||
Returns: | ||
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | ||
""" | ||
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] | ||
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] | ||
|
||
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) | ||
|
||
if token_ids_1 is not None: | ||
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) | ||
|
||
return output |