Skip to content

Python code that implement the Buckingham-Pi theorem for different variables and return all possible dimensionless pi terms. To cite this Original Software Publication: https://www.sciencedirect.com/science/article/pii/S2352711021001291

License

Notifications You must be signed in to change notification settings

ElsevierSoftwareX/SOFTX-D-21-00156

 
 

Repository files navigation

BuckinghamPy

Binder (GUI App)

Binder (Script)

Python code that implements the Buckingham-Pi theorem and return all sets of dimensionless groups

Installation


Clone the package from the github repository into the current directory

git clone https://github.com/saadgroup/BuckinghamPy.git . 

Use pip tool to install the package in the active python evironment

pip install .

Example

Consider a fluid with density R and viscosity V, pumped in a centrifugal pump with power input P, a volume flow rate Q, an impeller diameter E, and a rotational rate G.

The homogeneous function that relates all these variables is: f(R, V, P, Q, E, G) = 0

Using the fundamental units (M, L, T), find all the sets of dimensionless terms with the power input P being part of only one dimensionless term per set.

Using BuckinghamPy, we execute the following code:

from buckinghampy import BuckinghamPi

Example = BuckinghamPi()
Example.add_variable(name='R', units='M/L^(3)')
Example.add_variable(name='P', units='M*L^(2)/(T^3)', non_repeating=True)
Example.add_variable(name='V', units='M/(T*L)')
Example.add_variable(name='Q', units='L^(3)/T')
Example.add_variable(name='E', units='L')
Example.add_variable(name='G', units='1/T')

Example.generate_pi_terms()

Example.print_all()

Latex Rendered Results

or you can import the graphic user interface only in a Jupyter cell

from buckinghampy import BuckinghamPiGui

GUI=BuckinghamPiGui()

See Also


About

Python code that implement the Buckingham-Pi theorem for different variables and return all possible dimensionless pi terms. To cite this Original Software Publication: https://www.sciencedirect.com/science/article/pii/S2352711021001291

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 52.0%
  • Python 47.5%
  • Shell 0.5%