description |
---|
Function reference for c-calculate |
Shorthand syntax for c-calculate
.
> c-c 11 * 2
22
Shorthand syntax for switching trigonometric modes.
> c-c m r
Set calculation mode to radians
> c-c m d
Set calculation mode to degrees
Special modifiers that provide a shortcut for converting values between degrees and radians.
> c-c m r
Set calculation mode to radians
> c-c sin(90)
0.893996663600557
> c-c sin(90 deg)
1
> c-c sin(pi/2 rad)
1
> c-c 45 deg
0.785398163397448
> c-c m d
Set calculation mode to degrees
> c-c cos(pi)
0.998497149863863
> c-c cos(pi rad)
-1
> c-c cos(180 deg)
-1
> c-c pi/4 rad
45
Prefix for writing numbers in binary notation.
> c-c 0b1111
15
Prefix for writing numbers in octal notation.
> c-c 0o77
63
Prefix for writing numbers in hexadecimal notation.
> c-c 0xffffff
16777215
> c-c 0xFFFFFF
16777215
Radix notation. This allows you to express a number n
in any base a
, from 1 to 64.
> c-c 2'10000110000
1072
> c-c 8'2060
1072
> c-c 25'1hm
1072
> c-c 32'11g
1072
> c-c 47'mC
1072
CalcBot supports the following operators, and evaluates them in the order listed:
Add or subtracts 1 from a
, and assigns the result to a
. Returns the value of a
after it was incremented (the value assigned to a
).
> c-c x = 2
2
> c-c ++x
3
> c-c x
3
Add or subtracts 1 from a
, and assigns the result to a
. Returns the value of a
before it was incremented.
> c-c x = 2
2
> c-c x++
2
> c-c x
3
Negates n
. If n
is a truthy value, false (0) is returned. Otherwise, true (1) is returned.
> c-c not true
0
> c-c not false is true
1
Invert the bits of n
. The fractional part of n
will be truncated if there is any.
> c-c ~255
-256
> c-c ~~255
255
Take the factorial of n
. For example, 6!
is equivalent to 6 * 5 * 4 * 3 * 2 * 1
.
> c-c 6!
720
Raise a
to the power of b
.
> c-c 2 ^ 3
8
Multiply a
and b
.
> c-c 2 * 4
8
Divide a
by b
.
> c-c 15 / 5
3
Divide a
by b
and return the remainder of the result. This is also known as modulus division, or remainder division.
> c-c 8 % 2
0
Add a
and b
.
> c-c 1 + 1
2
Subtract b
from a
.
> c-c 1 - 1
0
Shift all the bits in a
to the left b
times. For example, 1 << 3
is equal to 2 ^ 3
. After shiting by 3 bits, the resulting binary is 1000
, equivalent to 8
.
> c-c 1 << 3
8
> c-c (5 << 2) + 5
25
Shift all the bits in a
to the right b
times. Bits at the end of the number will get discarded.
> c-c 8 >> 3
1
> c-c 25 >> 3
3
Returns true (1) if a
is equal to b
.
> c-c 3 == 1 + 2
1
> c-c not false == true
1
Returns true (1) if a
is not equal to b
.
> c-c 3 != 1 + 2
0
> c-c re(3i + 2) != im(3i + 2)
1
Returns true (1) if a
is approximately equal to b
. The difference between them must be less than 1 * 10 ^ -6
. For complex numbers, this operator will compare the real and imaginary components separately.
This operator is intended to be used when comparing the results of certain mathematical operations that produce slightly imprecise results (like prime notation).
> c-c 3.0000002 ~== 3
1
> c-c 3i + 2 ~== 2.9999999i + 2
1
Negates the behavior of the ~==
operator.
> c-c 3 ~!= 3
0
> c-c 5i + 2 ~!= i
1
Returns true (1) if a
is greater than b
.
> c-c 3 > 2
1
Returns true (1) if a
is less than b
.
> c-c 3 < 2
0
Returns true (1) if a
is greater than or equal to b
.
> c-c 3 >= 2
1
> c-c 4 >= 4
1
Returns true (1) if a
is less than or equal to b
.
> c-c 3 <= 2
0
> c-c 4 <= 4
1
Compares the bits of a
and b
one by one. If both bits have a value of 1
, the corresponding bit in the new number will also be 1
.
> c-c isodd(n) = n & 1
isodd(n) = n & 1
> c-c isodd(7)
1
> c-c 0b111 & 0b010
2
Compares the bits of a
and b
one by one. If either bit has a value of 1
, the corresponding bit in the new number will also be 1
.
> c-c 0b1100 | 0b0011
15
> c-c 178 | 0
178
Returns true if both a
and b
are truthy values.
> c-c 3 && 4
1
> c-c 3 && 0
0
Returns true if either a
or b
are truthy values.
> c-c 3 || 4
1
> c-c 3 || 0
1
> c-c 0 || 0
0
Assigns the value of b
to the symbol a
. If a
isn't a valid symbol, this operation will throw an error.
> c-c x = y = 100
100
> c-c x + y
200
> c-c 3x + 4 = 0
Variable names can only consist of letters and underscores.
Compound assignment operators. For example, writing a ^= b
is a shortcut for writing a = a ^ b
; writing a += b
is a shortcut for a = a + b
, etc. If a
isn't a valid symbol, this operation will throw an error.
> c-c x = 24
24
> c-c x /= 6
4
> c-c x
4
Returns true (1) if v
is a truthy value. Otherwise, false (0) is returned.
> c-c bool(3i)
1
> c-c bool(0)
0
Returns the value of true_exp
if cond
resolves to a truthy value. Otherwise, false_exp
is returned. If cond
resolves to a falsy value but false_exp
was not provided, NaN is returned.
> c-c x=5
5
> c-c if(x > 2, 2x, x)
10
Evaluates exp
where the special variable ind
represents the current index of the loop. ind
will be initially set to start
; then it will increment by step
until it reaches end
, at which point the loop will break and return the value of acc
.
If step
is not provided, it will be set to either 1 or -1 depending on the values of start
and end
.
accum_exp
is an expression that contains two special variables, cur
and acc
. cur
represents the current value of exp
, while acc
represents the combined values of all old values of cur
. Therefore, you can set accum_exp
to, for example, get the sum of a sequence exp
bounded by start
and end
. See the examples below for various ways you can utilize accum_exp
.
> c-c loop(ind, 0, 5, 1)
5
> c-c loop(2ind, 0, 5, 1)
10
> c-c loop(3ind+1, 11, 22, 2, cur * acc)
12075581440
Returns the value of exp
. If an error is generated while evaluating exp
, error_exp
will be returned instead.
> c-c try(circle(3i - 2), 1)
1
> c-c try(6^2, 2)
36
> c-c try(circle(3i - 2), (3i)!)
The `!` operator's left argument must be of type `number`.
Returns the summation of exp
, evaluated from when variable = start
to variable = end
. Both bounds are inclusive.
> c-c sum(n, n, 1, 100)
5050
> c-c sum(n^n/n, n, 1, 6)
8477
Returns the product of exp
, evaluated from when variable = start
to variable = end
. Both bounds are inclusive.
> c-c product(n, n, 1, 10)
3628800
> c-c 10!
3628800
Substitutes value
for the variable
in the given expression. For example, subst(x^2+5x+6, x, 0)
substitutes 0
for x
in the expression x^2+5x+6
, giving 6
.
> c-c subst(x^2+5x+6, x, 0)
6
> c-c subst((y+5)(y-2), y, -5)
0
Returns the sine, cosine, or tangent of the angle.
> c-c sin(pi/2)
1
> c-c cos(pi/2)
0
> c-c tan(pi/4)
1
Reciprocal functions of sin(angle)
, cos(angle)
, and tan(angle)
respectively. For example, csc(angle) = 1 / sin(angle)
.
> c-c csc(pi/2)
1
> c-c sec(pi/4)
1.414213562373095
> c-c cot(pi/4)
1
Inverse functions of sin(angle)
, cos(angle)
, and tan(angle)
respectively.
> c-c asin(1)
1.5707963267948966
> c-c acos(0)
1.5707963267948966
> c-c atan(1)
0.7853981633974483
Two-argument inverse tangent function.
> c-c atan2(-2, 1)
-1.1071487177940904
Inverse functions of csc(angle)
, sec(angle)
, and cot(angle)
respectively.
> c-c acsc(1)
1.5707963267948966
> c-c asec(sqrt(2))
0.7853981633974484
> c-c acot(1)
0.7853981633974483
Returns the hyperbolic sine, cosine, or tangent of the value.
> c-c sinh(e/2)
1.8179831047980461
> c-c cosh(e/2)
2.074864470111516
> c-c tanh(e/2)
0.8761936651700128
Reciprocal functions of sinh(value)
, cosh(value)
, and tanh(value)
respectively. For example, csch(value) = 1 / sinh(value)
.
> c-c csch(e/2)
0.5500601173689602
> c-c sech(e/2)
0.48195919030135675
> c-c coth(e/2)
1.1413001939542262
Inverse functions of sinh(value)
, cosh(value)
, and tanh(value)
respectively.
> c-c asinh(1/2)
0.48121182505960347
> c-c acosh(3/2)
0.9624236501192069
> c-c atanh(1/2)
0.5493061443340548
Inverse functions of csch(angle)
, sech(angle)
, and coth(angle)
respectively.
> c-c acsch(1/2)
1.4436354751788103
> c-c asech(1/2)
1.3169578969248166
> c-c acoth(1/2)
-1.5707963267948966i + 0.5493061443340548
Returns the given value converted to radians.
> c-c dtr(180)
3.141592653589793
> c-c rad(180)
3.141592653589793
Returns the given value converted to degrees.
> c-c rtd(pi)
180
> c-c deg(pi)
180
Returns the specified portion of one full revolution of a circle. For example, circle(0.5)
returns half of a full revolution. If the current trigonometric mode is degrees, this function returns value * 360
; otherwise, if it is radians, this function returns value * 2 * pi
.
> c-c m d
Set calculation mode to degrees
> c-c circle(0.5)
180
Returns a * 10 ^ b
.
> c-c scientific(5.1262, 4)
51262
Exponential function with base e
. Returns e ^ x
.
> c-c exp(2)
7.3890560989306495
Logarithmic function with base 10
by default.
> c-c log(10)
1
> c-c log(8, 2)
3
Inverse function of exp(x)
. Equivalent to the logarithmic function with base e
, or log(x, e)
.
> c-c ln(e)
1
Returns the hypotenuse of a right triangle whose legs are a
and b
, formally the square root of the sum of squares of a
and b
, that is sqrt(a^2 + b^2)
.
> c-c hypot(3, 4)
5
> c-c hypot(12, 5)
13
Returns the square root of n
.
> c-c sqrt(16)
4
> c-c sqrt(-4)
2i
Returns the cube root of n
.
> c-c cbrt(27)
3
Returns the i
th root of n
. For example, root(16, 2)
is equal to sqrt(16)
.
> c-c root(16, 2)
4
> c-c root(729, 6)
3
Returns n
raised to the p
power. This function is implicitly called when using the alternative syntax: n ^ p
.
> c-c pow(16, 1/2)
4
> c-c pow(2, 3)
8
> c-c pow(27, 1/3)
3
Returns the real part of complex number z
.
> c-c re(3i + 2)
2
Returns the imaginary part of complex number z
.
> c-c im(3i + 2)
3
Returns the argument of complex number z
.
> c-c arg(3i + 2)
0.9827937232473291
Returns the complex conjugate of z
.
> c-c conj(3i + 2)
-3i + 2
Returns the n
th term of the Fibonacci sequence.
> c-c fib(8)
21
Combinations function. Returns the coefficient of the term x ^ k
in the polynomial expansion of the binomial (1 + x) ^ n
. This is also the number in row n
column k
of Pascal's triangle.
> c-c ncr(8, 2)
28
Permutations function. Computes the number of ways to obtain an ordered subset of r
elements from a set of n
elements.
> c-c npr(8, 2)
56
Normal probability density function. Note that the returned values do not represent actual probabilities; you might be looking for normcdf.
> c-c normpdf(0)
0.398942280401432
Cumulative normal probability density function. Computes the probability of a normally distributed random variable, with mean m
and standard deviation s
, falling in the interval a
to b
.
> c-c normcdf(-infinity, -2.9)
0.001865813327129
Geometric probability function. Computes the probability that the first success of an event, with success probability p
, occurs on the n
th trial.
> c-c geompdf(0.2, 8)
0.04194304
Cumulative geometric probability function. Computes the probability that the first success of an event, with success probability p
, occurs on or before the n
th trial.
> c-c geomcdf(0.1, 30)
0.9576088417247837
Binomial probability function. Computes the probability of exactly x
successes of an event, with success probability p
, occurring out of n
total trials.
> c-c binompdf(4, 0.6, 3)
0.3456
Cumulative binomial probability function. Computes the probability of x
or fewer success of an event, with success probability p
, occurring out of n
total trials.
> c-c binomcdf(3, 0.2, 2)
0.992
Returns an approximation of the error function of z
.
> c-c erf(0.5)
0.5204999077232427
The complementary error function.
> c-c erfc(0.3)
0.6713732158964137
> c-c 1-erf(0.3)
0.6713732158964137
Returns a random number from 0 (inclusive) to 1 (non-inclusive).
> c-c rand()
(results will vary)
Here is a custom function implementation that will generate random integers from a selected minimum and maximum, inclusively:
> c-c randint(min, max = false) = if (max is false, floor(rand() * (min + 1)), floor(rand() * (max - min + 1)) + min)
Custom function created
> c-c randint(15, 35)
(random integer from 15 to 35, inclusive)
Returns the factorial of n
. This function is implicitly called when using the alternative syntax: n!
> c-c factorial(6)
720
Returns the gamma function of n
using Lanczos's approximation.
> c-c gamma(5)
24
> c-c gamma(3i + 4)
-1.511251952289958i - 1.1294284935320542
Returns the absolute value of n
.
> c-c abs(-4)
4
> c-c abs(4)
4
Returns a value linearly interpolated fromv1
to v2
by a constant t
. For example, lerp(0, 10, 0.5)
returns the midpoint of 0
and 10
.
> c-c lerp(0, 10, 0.5)
5
Calculates the linear parameter that produces the interpolant v
from v1
to v2
.
> c-c invlerp(0, 10, 5)
0.5
Returns n
rounded to d
significant digits.
> c-c siground(3.1567, 2)
3.2
Returns n
rounded to the nearest s
, integer by default.
> c-c round(0.45)
0
> c-c round(0.5)
1
> c-c round(0.15, 0.25)
0.25
Returns n
rounded up to the next s
, integer by default.
> c-c ceil(0.45)
1
> c-c ceil(0)
0
> c-c ceil(0.26, 0.25)
0.5
Returns n
rounded down to the next s
, integer by default.
> c-c floor(0.65)
0
> c-c floor(1)
1
> c-c floor(0.74, 0.4)
0.4
Returns n
rounded towards 0 to the next s
, integer by default. When n
is positive, this is equivalent to floor(n, s)
. When n
is negative, this is equivalent to ceil(n, s)
.
> c-c trunc(4.9)
4
> c-c trunc(-5)
-5
> c-c trunc(-0.89, 0.14)
-0.84
Returns the lesser value of a
and b
.
> c-c min(1, 3)
1
Returns the greater value of a
and b
.
> c-c max(1, 3)
3
Computes the greatest common factor of a
and b
.
> c-c gcf(35, 7)
7
Computes the least common multiple of a
and b
.
> c-c lcm(4, 5)
20
Returns n
, clamped to the given range set by l
(left, negative) and r
(right, positive)
> c-c clamp(0.5, 5, 6)
5
> c-c clamp(4.2, 4, 5)
4.2
> c-c clamp(9, 1, 2)
2
Returns the polarity of n
.
> c-c sign(pi)
1
> c-c sign(0)
0
> c-c sign(-pi)
-1
Returns the amount of bits in the binary representation of n
. The fractional part of n
will be truncated if there is any.
> c-c size(0b1111)
4
> c-c size(255)
8