Skip to content

Commit

Permalink
update README.
Browse files Browse the repository at this point in the history
  • Loading branch information
EdisonLeeeee committed Aug 24, 2020
1 parent 92c4610 commit 9e28c0d
Showing 1 changed file with 24 additions and 18 deletions.
42 changes: 24 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,40 +36,40 @@ In detail, the following methods are currently implemented:
## Semi-supervised models
### General

+ **ChebyNet** from *Michaël Defferrard et al*, [📝Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering](https://arxiv.org/abs/1606.09375), *NIPS'16*
+ **ChebyNet** from *Michaël Defferrard et al*, [📝Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering](https://arxiv.org/abs/1606.09375), *NIPS'16*.
[[:octocat:Official Codes]](https://github.com/mdeff/cnn_graph), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_ChebyNet.ipynb)
+ **GCN** from *Thomas N. Kipf et al*, [📝Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907), *ICLR'17*
+ **GCN** from *Thomas N. Kipf et al*, [📝Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907), *ICLR'17*.
[[:octocat:Official Codes]](https://github.com/tkipf/gcn), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_GCN.ipynb)
+ **GraphSAGE** from *William L. Hamilton et al*, [📝Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216), *NIPS'17*
+ **GraphSAGE** from *William L. Hamilton et al*, [📝Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216), *NIPS'17*.
[[:octocat:Official Codes]](https://github.com/williamleif/GraphSAGE), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_GraphSAGE.ipynb)
+ **FastGCN** from *Jie Chen et al*, [FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling](https://arxiv.org/abs/1801.10247), *ICLR'18*
+ **FastGCN** from *Jie Chen et al*, [FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling](https://arxiv.org/abs/1801.10247), *ICLR'18*.
[[:octocat:Official Codes]](https://github.com/matenure/FastGCN), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_FastGCN.ipynb)
+ **LGCN** from *Hongyang Gao et al*, [📝Large-Scale Learnable Graph Convolutional Networks](https://arxiv.org/abs/1808.03965), *KDD'18*
+ **LGCN** from *Hongyang Gao et al*, [📝Large-Scale Learnable Graph Convolutional Networks](https://arxiv.org/abs/1808.03965), *KDD'18*.
[[:octocat:Official Codes]](https://github.com/divelab/lgcn), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_LGCN.ipynb)
+ **GAT** from *Petar Veličković et al*, [📝Graph Attention Networks](https://arxiv.org/abs/1710.10903), *ICLR'18*
+ **GAT** from *Petar Veličković et al*, [📝Graph Attention Networks](https://arxiv.org/abs/1710.10903), *ICLR'18*.
[[:octocat:Official Codes]](https://github.com/PetarV-/GAT), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_GAT.ipynb)
+ **SGC** from *Felix Wu et al*, [📝Simplifying Graph Convolutional Networks](https://arxiv.org/abs/1902.07153), *ICML'19*
+ **SGC** from *Felix Wu et al*, [📝Simplifying Graph Convolutional Networks](https://arxiv.org/abs/1902.07153), *ICML'19*.
[[:octocat:Official Codes]](https://github.com/Tiiiger/SGC), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_SGC.ipynb)
+ **GWNN** from *Bingbing Xu et al*, [📝Graph Wavelet Neural Network](https://arxiv.org/abs/1904.07785), *ICLR'19
, [[:octocat:Official Codes]](https://github.com/Eilene/GWNN), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_GWNN.ipynb)
+ **GMNN** from *Meng Qu et al*, [📝Graph Markov Neural Networks](https://arxiv.org/abs/1905.06214), *ICML'19*
+ **GWNN** from *Bingbing Xu et al*, [📝Graph Wavelet Neural Network](https://arxiv.org/abs/1904.07785), *ICLR'19*.
[[:octocat:Official Codes]](https://github.com/Eilene/GWNN), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_GWNN.ipynb)
+ **GMNN** from *Meng Qu et al*, [📝Graph Markov Neural Networks](https://arxiv.org/abs/1905.06214), *ICML'19*.
[[:octocat:Official Codes]](https://github.com/DeepGraphLearning/GMNN), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_GMNN.ipynb)
+ **ClusterGCN** from *Wei-Lin Chiang et al*, [📝Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953), *KDD'19*
+ **ClusterGCN** from *Wei-Lin Chiang et al*, [📝Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953), *KDD'19*.
[[:octocat:Official Codes]](https://github.com/google-research/google-research/tree/master/cluster_gcn), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_ClusterGCN.ipynb)
+ **DAGNN** from *Meng Liu et al*, [📝Towards Deeper Graph Neural Networks](https://arxiv.org/abs/2007.09296), *KDD'20*
+ **DAGNN** from *Meng Liu et al*, [📝Towards Deeper Graph Neural Networks](https://arxiv.org/abs/2007.09296), *KDD'20*.
[[:octocat:Official Codes]](https://github.com/mengliu1998/DeeperGNN), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_DAGNN.ipynb)


### Defense models
+ **RobustGCN** from *Dingyuan Zhu et al*, [📝Robust Graph Convolutional Networks Against Adversarial Attacks](https://dl.acm.org/doi/10.1145/3292500.3330851), *KDD'19
, [[:octocat:Official Codes]](https://github.com/thumanlab/nrlweb/blob/master/static/assets/download/RGCN.zip), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_RobustGCN.ipynb)
+ **SBVAT/OBVAT** from *Zhijie Deng et al*, [📝Batch Virtual Adversarial Training for Graph Convolutional Networks](https://arxiv.org/abs/1902.09192), *ICML'19
, [[:octocat:Official Codes]](https://github.com/thudzj/BVAT)
+ **RobustGCN** from *Dingyuan Zhu et al*, [📝Robust Graph Convolutional Networks Against Adversarial Attacks](https://dl.acm.org/doi/10.1145/3292500.3330851), *KDD'19*.
[[:octocat:Official Codes]](https://github.com/thumanlab/nrlweb/blob/master/static/assets/download/RGCN.zip), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_RobustGCN.ipynb)
+ **SBVAT/OBVAT** from *Zhijie Deng et al*, [📝Batch Virtual Adversarial Training for Graph Convolutional Networks](https://arxiv.org/abs/1902.09192), *ICML'19*.
[[:octocat:Official Codes]](https://github.com/thudzj/BVAT)

## Unsupervised models
+ **Deepwalk** from *Bryan Perozzi et al*, [📝DeepWalk: Online Learning of Social Representations](https://arxiv.org/abs/1403.6652), *KDD'14*
+ **Deepwalk** from *Bryan Perozzi et al*, [📝DeepWalk: Online Learning of Social Representations](https://arxiv.org/abs/1403.6652), *KDD'14*.
[[:octocat:Official Codes]](https://github.com/phanein/deepwalk), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_Deepwalk.ipynb)
+ **Node2vec** from *Aditya Grover et al*, [📝node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653), *KDD'16*
+ **Node2vec** from *Aditya Grover et al*, [📝node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653), *KDD'16*.
[[:octocat:Official Codes]](https://github.com/aditya-grover/node2vec), [[🌈 GraphGallery Example]](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples/test_Node2vec.ipynb)

# Quick Start
Expand Down Expand Up @@ -179,6 +179,12 @@ with plt.style.context(['science', 'no-latex']):
# More Examples
Please refer to the [examples](https://github.com/EdisonLeeeee/GraphGallery/blob/master/examples) directory.

# TODO Lists
- [ ] Add Docstrings and Documentation
- [ ] Support for `graph Classification` and `link prediction` tasks
- [ ] Support for Heterogeneous graphs
- [ ] Add PyTorch models support

# Acknowledgement
This project is motivated by [Pytorch Geometric](https://github.com/rusty1s/pytorch_geometric), [Tensorflow Geometric](https://github.com/CrawlScript/tf_geometric) and [Stellargraph](https://github.com/stellargraph/stellargraph), and the original implementations from the authors, thanks for their excellent works!

0 comments on commit 9e28c0d

Please sign in to comment.