Skip to content

Commit

Permalink
add entrainemnt budget to eamxx
Browse files Browse the repository at this point in the history
  • Loading branch information
mahf708 committed May 14, 2024
1 parent 1476696 commit be0c10e
Show file tree
Hide file tree
Showing 7 changed files with 644 additions and 1 deletion.
1 change: 1 addition & 0 deletions components/eamxx/src/diagnostics/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ set(DIAGNOSTIC_SRCS
aodvis.cpp
number_path.cpp
aerocom_cld.cpp
entrainment_budget.cpp
)

add_library(diagnostics ${DIAGNOSTIC_SRCS})
Expand Down
300 changes: 300 additions & 0 deletions components/eamxx/src/diagnostics/entrainment_budget.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
#include "diagnostics/entrainment_budget.hpp"

#include "diagnostics/entrainment_budget_util.hpp"
#include "ekat/ekat_workspace.hpp"
#include "ekat/kokkos/ekat_kokkos_utils.hpp"
#include "share/util/scream_universal_constants.hpp"

namespace scream {

EntrainmentBudget::EntrainmentBudget(const ekat::Comm &comm,
const ekat::ParameterList &params)
: AtmosphereDiagnostic(comm, params) {
// Nothing to do here
}

void EntrainmentBudget::set_grids(
const std::shared_ptr<const GridsManager> grids_manager) {
using namespace ekat::units;
using namespace ShortFieldTagsNames;

auto grid = grids_manager->get_grid("Physics");
const auto &grid_name = grid->name();

const auto nondim = Units::nondimensional();

// Set the index map and units map
EntrainmentBudgetDiagUtil eadu;
m_index_map = eadu.index_map;
m_units_map = eadu.units_map;
m_ndiag = eadu.size;

if(eadu.pblinvalg == "temperature-inversion") {
m_pblinvalg = 1;
} else if(eadu.pblinvalg == "thetal-only") {
m_pblinvalg = 2;
} else if(eadu.pblinvalg == "qt_only") {
m_pblinvalg = 3;
} else {
EKAT_ERROR_MSG(
"Error! Invalid pblinvalg. Only temperature-inversion, thetal-only, "
"and "
"qt_only are currently supported.\n");
}

// Ensure m_index_map and m_units_map match
EKAT_REQUIRE_MSG(
m_index_map.size() == m_units_map.size(),
"Error! Some inconsistency in EntrainmentBudget: index and units "
"maps do not match!\n");
// Ensure m_index_map and m_ndiag match
EKAT_REQUIRE_MSG(
static_cast<int>(m_index_map.size()) == m_ndiag,
"Error! Some inconsistency in EntrainmentBudget: m_ndiag and index "
"map do not match!\n");

m_ncols = grid->get_num_local_dofs();
m_nlevs = grid->get_num_vertical_levels();

// Define layouts we need (both inputs and outputs)
FieldLayout scalar2d_layout{{COL, LEV}, {m_ncols, m_nlevs}};
FieldLayout vector1d_layout{{COL, CMP}, {m_ncols, m_ndiag}};

// The fields required for this diagnostic to be computed
// Get qc and qv
add_field<Required>("qc", scalar2d_layout, kg / kg, grid_name);
add_field<Required>("qv", scalar2d_layout, kg / kg, grid_name);
// Get T_mid, p_mid
add_field<Required>("T_mid", scalar2d_layout, K, grid_name);
add_field<Required>("p_mid", scalar2d_layout, Pa, grid_name);
// Get pseudo_density
add_field<Required>("pseudo_density", scalar2d_layout, Pa, grid_name);
// Get radiation up and down terms
add_field<Required>("SW_flux_dn", scalar2d_layout, W / m * m, grid_name);
add_field<Required>("SW_flux_up", scalar2d_layout, W / m * m, grid_name);
add_field<Required>("LW_flux_dn", scalar2d_layout, W / m * m, grid_name);
add_field<Required>("LW_flux_up", scalar2d_layout, W / m * m, grid_name);

// Construct and allocate the output field
FieldIdentifier fid("EntrainmentBudget", vector1d_layout, nondim, grid_name);
m_diagnostic_output = Field(fid);
m_diagnostic_output.allocate_view();

// Self-document the outputs to parse in post-processing
using stratt_t = std::map<std::string, std::string>;
auto d = get_diagnostic();
auto &metadata =
d.get_header().get_extra_data<stratt_t>("io: string attributes");
for(const auto &it : m_index_map) {
metadata[it.first] =
std::to_string(it.second) + " (" + m_units_map[it.first] + ")";
}
}

void EntrainmentBudget::initialize_impl(const RunType /*run_type*/) {
// Field qt will have units and layout similar to qc, qv
const auto &qv = get_field_in("qv");
const auto &qvid = qv.get_header().get_identifier();
const auto &qvgn = qvid.get_grid_name();
const auto &qvlo = qvid.get_layout();
FieldIdentifier qf_prev("qtot_prev", qvlo.clone(), qvid.get_units(), qvgn);
m_prev_qt = Field(qf_prev);
m_prev_qt.allocate_view();
// Field tl will have units of and layout similar to T_mid
const auto &tm = get_field_in("T_mid");
const auto &tmid = tm.get_header().get_identifier();
const auto &tmgn = tmid.get_grid_name();
const auto &tmlo = tmid.get_layout();
FieldIdentifier tf_prev("tliq_prev", tmlo.clone(), tmid.get_units(), tmgn);
m_prev_tl = Field(tf_prev);
m_prev_tl.allocate_view();
}

void EntrainmentBudget::calc_tl_qt(const view_2d &tm_v, const view_2d &pm_v,
const view_2d &qv_v, const view_2d &qc_v,
const view_2d &tl_v, const view_2d &qt_v) {
int ncols = m_ncols;
int nlevs = m_nlevs;
Kokkos::parallel_for(
Kokkos::RangePolicy<>(0, ncols * nlevs), KOKKOS_LAMBDA(const int &idx) {
const int icol = idx / ncols;
const int jlev = idx % nlevs;
qt_v(icol, jlev) = qc_v(icol, jlev) + qv_v(icol, jlev);
tl_v(icol, jlev) = PF::calculate_thetal_from_theta(
PF::calculate_theta_from_T(tm_v(icol, jlev), pm_v(icol, jlev)),
tm_v(icol, jlev), qc_v(icol, jlev));
});
}

void EntrainmentBudget::init_timestep(const util::TimeStamp &start_of_step) {
m_start_t = start_of_step;

const auto &tm_v = get_field_in("T_mid").get_view<Real **>();
const auto &pm_v = get_field_in("p_mid").get_view<Real **>();
const auto &qv_v = get_field_in("qv").get_view<Real **>();
const auto &qc_v = get_field_in("qc").get_view<Real **>();

const auto &m_prev_qt_v = m_prev_qt.get_view<Real **>();
const auto &m_prev_tl_v = m_prev_tl.get_view<Real **>();

calc_tl_qt(tm_v, pm_v, qv_v, qc_v, m_prev_tl_v, m_prev_qt_v);
}

void EntrainmentBudget::compute_diagnostic_impl() {
using PC = scream::physics::Constants<Real>;
using KT = KokkosTypes<DefaultDevice>;
using MT = typename KT::MemberType;
using ESU = ekat::ExeSpaceUtils<typename KT::ExeSpace>;

constexpr Real g = PC::gravit;

// Before doing anything, subview the out field for each variable
auto out = m_diagnostic_output.get_view<Real **>();

auto o_pm_hplus = ekat::subview_1(out, m_index_map["p+"]);
auto o_tl_hplus = ekat::subview_1(out, m_index_map["tl+"]);
auto o_tl_caret = ekat::subview_1(out, m_index_map["tl^"]);
auto o_tl_ttend = ekat::subview_1(out, m_index_map["tl_ttend"]);
auto o_qt_hplus = ekat::subview_1(out, m_index_map["qt+"]);
auto o_qt_caret = ekat::subview_1(out, m_index_map["qt^"]);
auto o_qt_ttend = ekat::subview_1(out, m_index_map["qt_ttend"]);
auto o_df_inpbl = ekat::subview_1(out, m_index_map["dF"]);

// Get the input views
const auto &qc_v = get_field_in("qc").get_view<Real **>();
const auto &qv_v = get_field_in("qv").get_view<Real **>();
const auto &tm_v = get_field_in("T_mid").get_view<Real **>();
const auto &pm_v = get_field_in("p_mid").get_view<Real **>();
const auto &pd_v = get_field_in("pseudo_density").get_view<Real **>();
const auto &sd_v = get_field_in("SW_flux_dn").get_view<Real **>();
const auto &su_v = get_field_in("SW_flux_dn").get_view<Real **>();
const auto &ld_v = get_field_in("LW_flux_dn").get_view<Real **>();
const auto &lu_v = get_field_in("LW_flux_up").get_view<Real **>();

// tracked stuff
const auto &prev_qtot_v = m_prev_qt.get_view<Real **>();
const auto &prev_tliq_v = m_prev_tl.get_view<Real **>();

view_2d qt_v("qt_v", m_ncols, m_nlevs);
view_2d tl_v("tl_v", m_ncols, m_nlevs);
calc_tl_qt(tm_v, pm_v, qv_v, qc_v, tl_v, qt_v);

const auto &curr_ts =
get_field_in("qc").get_header().get_tracking().get_time_stamp();

std::int64_t dt = curr_ts - m_start_t;

const int num_levs = m_nlevs;
const int pblinvalg = m_pblinvalg;
const auto policy = ESU::get_default_team_policy(m_ncols, m_nlevs);

constexpr int wsms = 1;
using WSMgr = ekat::WorkspaceManager<Real, DefaultDevice>;
WSMgr wsm(num_levs, wsms, policy);

Kokkos::parallel_for(
"Compute " + name(), policy, KOKKOS_LAMBDA(const MT &team) {
const int icol = team.league_rank();
// inputs
const auto qc_icol = ekat::subview(qc_v, icol);
const auto qv_icol = ekat::subview(qv_v, icol);
const auto tm_icol = ekat::subview(tm_v, icol);
const auto pm_icol = ekat::subview(pm_v, icol);
const auto pd_icol = ekat::subview(pd_v, icol);
const auto sd_icol = ekat::subview(sd_v, icol);
const auto su_icol = ekat::subview(su_v, icol);
const auto ld_icol = ekat::subview(ld_v, icol);
const auto lu_icol = ekat::subview(lu_v, icol);

// tracked
const auto qt_icol = ekat::subview(qt_v, icol);
const auto tl_icol = ekat::subview(tl_v, icol);

auto prev_qtot_icol = ekat::subview(prev_qtot_v, icol);
auto prev_tliq_icol = ekat::subview(prev_tliq_v, icol);

auto ws = wsm.get_workspace(team);
ekat::Unmanaged<WSMgr::view_1d<Real>> tm_grad;
ws.take_many_contiguous_unsafe<wsms>({"tm_grad"}, {&tm_grad});

// We first want to find the PBL inversion. There are three methods to
// do so. All our methods here rely on the *gradient* of state fields
// (for now). First, we can simply find the first level from the surface
// that has a a temperature "inversion" (temperature goes positive
// instead of negative). Second, we can find the level which has the
// biggest positive jump in theta_l. Third, we can find the level which
// has the biggest negative jump in qt.

int opt_tm_grad_lev = 0;
// Find tm_grad (tm_grad is a catch-all for the 3 methods)
Kokkos::parallel_for(
Kokkos::TeamVectorRange(team, 1, num_levs), [&](int k) {
auto pm_diff = pm_icol(k - 1) - pm_icol(k);
if(pblinvalg == 1) {
// pblinvalg = 1 ---> based solely on
// d(T_mid)/d(p_mid); finding the min (because
// d(p_mid) < 0), so keeping signs
tm_grad(k) = (tm_icol(k - 1) - tm_icol(k)) / pm_diff;
} else if(pblinvalg == 2) {
// pblinvalg = 2 ---> based solely on
// d(theta_l)/d(p_mid); finding the min
// (because d(p_mid) < 0), so keeping signs
tm_grad(k) = (tl_icol(k - 1) - tl_icol(k)) / pm_diff;
} else if(pblinvalg == 3) {
// pblinvalg = 3 ---> based solely on
// d(q_t)/d(p_mid); finding the max (because
// d(p_mid) < 0), so reversing signs
tm_grad(k) = -(qt_icol(k - 1) - qt_icol(k)) / pm_diff;
}
});
team.team_barrier();

// Find minimum gradient, because d(p_mid) < 0 in definition above
// Starting from the surface, and ensuring p_mid > 70000.0 Pa,
// to avoid resolving to some odd place higher up in the atmosphere.
using minloc_t = Kokkos::MinLoc<Real, int>;
using minloc_value_t = typename minloc_t::value_type;
minloc_value_t minloc;
Kokkos::parallel_reduce(
Kokkos::TeamVectorRange(team, 1, num_levs),
[&](const int &k, minloc_value_t &result) {
if(tm_grad(k) < result.val && pm_icol(k) > 70000.0) {
result.val = tm_grad(k);
result.loc = k;
}
},
minloc_t(minloc));
team.team_barrier();
opt_tm_grad_lev = minloc.loc;

// Save some outputs just above the "mixed" PBL
o_pm_hplus(icol) = pm_icol(opt_tm_grad_lev - 1);
o_tl_hplus(icol) = tl_icol(opt_tm_grad_lev - 1);
o_qt_hplus(icol) = qt_icol(opt_tm_grad_lev - 1);

// Save the dF term (F(h) - F(0))
o_df_inpbl(icol) = (sd_icol(opt_tm_grad_lev - 1) - sd_icol(0)) -
(su_icol(opt_tm_grad_lev - 1) - su_icol(0)) +
(ld_icol(opt_tm_grad_lev - 1) - ld_icol(0)) -
(lu_icol(opt_tm_grad_lev - 1) - lu_icol(0));

// Now only need to compute below from opt_tm_grad_lev to num_levs
Kokkos::parallel_for(
Kokkos::TeamVectorRange(team, opt_tm_grad_lev, num_levs),
[&](int k) {
// The time-based tendencies
auto tl_tend = (tl_icol(k) - prev_tliq_icol(k)) / dt;
auto qt_tend = (qt_icol(k) - prev_qtot_icol(k)) / dt;
// the integrated (averaged) quantities
o_tl_caret(icol) += tl_icol(k) * pd_icol(k) / g;
o_tl_ttend(icol) += tl_tend * pd_icol(k) / g;
o_qt_caret(icol) += qt_icol(k) * pd_icol(k) / g;
o_qt_ttend(icol) += qt_tend * pd_icol(k) / g;
});

// release stuff from wsm
ws.release_many_contiguous<wsms>({&tm_grad});
});
}

} // namespace scream
69 changes: 69 additions & 0 deletions components/eamxx/src/diagnostics/entrainment_budget.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
#ifndef EAMXX_ENTRAINMENT_BUDGET_DIAG
#define EAMXX_ENTRAINMENT_BUDGET_DIAG

#include "share/atm_process/atmosphere_diagnostic.hpp"
#include "share/util/scream_common_physics_functions.hpp"

namespace scream {

/*
* This diagnostic will compute entrainment budget terms.
*/

class EntrainmentBudget : public AtmosphereDiagnostic {
public:
using PF = scream::PhysicsFunctions<DefaultDevice>;
using KT = KokkosTypes<DefaultDevice>;
using view_2d = typename KT::template view_2d<Real>;

// Constructors
EntrainmentBudget(const ekat::Comm &comm, const ekat::ParameterList &params);

// The name of the diagnostic
std::string name() const { return "EntrainmentBudget"; };

// Set the grid
void set_grids(
const std::shared_ptr<const GridsManager> grids_manager) override;

protected:
#ifdef KOKKOS_ENABLE_CUDA
public:
#endif
void compute_diagnostic_impl();

// Let's override the init time step method
void init_timestep(const util::TimeStamp &start_of_step) override;

// Let's override the initialize method to set the fields below
void initialize_impl(const RunType /*run_type*/) override;

// A function to calculate the tracked fields of interest
void calc_tl_qt(const view_2d &tm_v, const view_2d &pm_v, const view_2d &qv_v,
const view_2d &qc_v, const view_2d &tl_v,
const view_2d &qt_v);

// Store fields at init_timestep
// That is before anything takes place in atm
Field m_prev_qt;
Field m_prev_tl;
util::TimeStamp m_start_t;

// Grid info
int m_ncols;
int m_nlevs;

// How many diags we have
int m_ndiag;

// Attribute maps for self-documentation
std::map<std::string, int> m_index_map;
std::map<std::string, std::string> m_units_map;

// Which PBL inversion algorithm to use
int m_pblinvalg;
};

} // namespace scream

#endif // EAMXX_ENTRAINMENT_BUDGET_DIAG
Loading

0 comments on commit be0c10e

Please sign in to comment.