forked from zone117x/node-multi-hashing
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
DECLARE_FUNC(odo) Approach Update binding.gyp Odo Compiling Add OdoCyrpt Libs Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Update multihashing.cc Revert "Update multihashing.cc" This reverts commit 81f2c0a. Update multihashing.cc Update multihashing.cc Update multihashing.cc Odo Compile Naming Header Match OdoMiner Odo Compiles Odo Config Update Odo Config Update multihashing.cc Update odo.cc Compile Remove Update multihashing.cc Update odo.cc Compile Update Header
- Loading branch information
Showing
9 changed files
with
1,045 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,302 @@ | ||
// Copyright (c) 2009-2010 Satoshi Nakamoto | ||
// Copyright (c) 2009-2018 The DigiByte developers | ||
// Distributed under the MIT/X11 software license, see the accompanying | ||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | ||
|
||
#include "odocrypt.h" | ||
|
||
#include <algorithm> | ||
|
||
struct OdoRandom | ||
{ | ||
// LCG parameters from Knuth | ||
const static uint64_t BASE_MULTIPLICAND = 6364136223846793005ull; | ||
const static uint64_t BASE_ADDEND = 1442695040888963407ull; | ||
|
||
OdoRandom(uint32_t seed): | ||
current(seed), | ||
multiplicand(1), | ||
addend(0) | ||
{} | ||
|
||
// For a standard LCG, every seed produces the same sequence, but from a different | ||
// starting point. This generator gives the 1st, 3rd, 6th, 10th, etc output from | ||
// a standard LCG. This ensures that every seed produces a unique sequence. | ||
inline uint32_t NextInt() | ||
{ | ||
addend += multiplicand * BASE_ADDEND; | ||
multiplicand *= BASE_MULTIPLICAND; | ||
current = current * multiplicand + addend; | ||
return current >> 32; | ||
} | ||
|
||
inline uint64_t NextLong() | ||
{ | ||
uint64_t hi = NextInt(); | ||
return (hi << 32) | NextInt(); | ||
} | ||
|
||
inline int Next(int N) | ||
{ | ||
return ((uint64_t)NextInt() * N) >> 32; | ||
} | ||
|
||
template<class T, size_t sz> | ||
void Permutation(T (&arr)[sz]) | ||
{ | ||
for (size_t i = 0; i < sz; i++) | ||
arr[i] = i; | ||
for (int i = 1; i < sz; i++) | ||
std::swap(arr[i], arr[Next(i+1)]); | ||
} | ||
|
||
uint64_t current; | ||
uint64_t multiplicand; | ||
uint64_t addend; | ||
}; | ||
|
||
OdoCrypt::OdoCrypt(uint32_t key) | ||
{ | ||
OdoRandom r(key); | ||
|
||
// Randomize each s-box | ||
for (int i = 0; i < SMALL_SBOX_COUNT; i++) | ||
{ | ||
r.Permutation(Sbox1[i]); | ||
} | ||
for (int i = 0; i < LARGE_SBOX_COUNT; i++) | ||
{ | ||
r.Permutation(Sbox2[i]); | ||
} | ||
|
||
// Randomize each p-box | ||
for (int i = 0; i < 2; i++) | ||
{ | ||
Pbox& perm = Permutation[i]; | ||
for (int j = 0; j < PBOX_SUBROUNDS; j++) | ||
for (int k = 0; k < STATE_SIZE/2; k++) | ||
perm.mask[j][k] = r.NextLong(); | ||
for (int j = 0; j < PBOX_SUBROUNDS-1; j++) | ||
for (int k = 0; k < STATE_SIZE/2; k++) | ||
perm.rotation[j][k] = r.Next(63) + 1; | ||
} | ||
|
||
// Randomize rotations | ||
// Rotations must be distinct, non-zero, and have odd sum | ||
{ | ||
int bits[WORD_BITS-1]; | ||
r.Permutation(bits); | ||
int sum = 0; | ||
for (int j = 0; j < ROTATION_COUNT-1; j++) | ||
{ | ||
Rotations[j] = bits[j] + 1; | ||
sum += Rotations[j]; | ||
} | ||
for (int j = ROTATION_COUNT-1; ; j++) | ||
{ | ||
if ((bits[j] + 1 + sum) % 2) | ||
{ | ||
Rotations[ROTATION_COUNT-1] = bits[j] + 1; | ||
break; | ||
} | ||
} | ||
} | ||
|
||
// Randomize each round key | ||
for (int i = 0; i < ROUNDS; i++) | ||
RoundKey[i] = r.Next(1 << STATE_SIZE); | ||
} | ||
|
||
void OdoCrypt::Encrypt(char cipher[DIGEST_SIZE], const char plain[DIGEST_SIZE]) const | ||
{ | ||
uint64_t state[STATE_SIZE]; | ||
Unpack(state, plain); | ||
PreMix(state); | ||
for (int round = 0; round < ROUNDS; round++) | ||
{ | ||
ApplyPbox(state, Permutation[0]); | ||
ApplySboxes(state, Sbox1, Sbox2); | ||
ApplyPbox(state, Permutation[1]); | ||
ApplyRotations(state, Rotations); | ||
ApplyRoundKey(state, RoundKey[round]); | ||
} | ||
Pack(state, cipher); | ||
} | ||
|
||
template<class T, size_t sz1, size_t sz2> | ||
void InvertMapping(T (&res)[sz1][sz2], const T (&mapping)[sz1][sz2]) | ||
{ | ||
for (size_t i = 0; i < sz1; i++) | ||
for (size_t j = 0; j < sz2; j++) | ||
res[i][mapping[i][j]] = j; | ||
} | ||
|
||
void OdoCrypt::Decrypt(char plain[DIGEST_SIZE], const char cipher[DIGEST_SIZE]) const | ||
{ | ||
uint8_t invSbox1[SMALL_SBOX_COUNT][1 << SMALL_SBOX_WIDTH]; | ||
uint16_t invSbox2[LARGE_SBOX_COUNT][1 << LARGE_SBOX_WIDTH]; | ||
|
||
InvertMapping(invSbox1, Sbox1); | ||
InvertMapping(invSbox2, Sbox2); | ||
|
||
uint64_t state[STATE_SIZE]; | ||
Unpack(state, cipher); | ||
for (int round = ROUNDS-1; round >= 0; round--) | ||
{ | ||
ApplyRoundKey(state, RoundKey[round]); | ||
// LCM(STATE_SIZE, WORD_BITS)-1 is enough iterations, but this will do. | ||
for (int i = 0; i < STATE_SIZE*WORD_BITS-1; i++) | ||
ApplyRotations(state, Rotations); | ||
ApplyInvPbox(state, Permutation[1]); | ||
ApplySboxes(state, invSbox1, invSbox2); | ||
ApplyInvPbox(state, Permutation[0]); | ||
} | ||
PreMix(state); | ||
Pack(state, plain); | ||
} | ||
|
||
void OdoCrypt::Unpack(uint64_t state[STATE_SIZE], const char bytes[DIGEST_SIZE]) | ||
{ | ||
std::fill(state, state+STATE_SIZE, 0); | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
{ | ||
for (int j = 0; j < 8; j++) | ||
{ | ||
state[i] |= (uint64_t)(uint8_t)bytes[8*i + j] << (8*j); | ||
} | ||
} | ||
} | ||
|
||
void OdoCrypt::Pack(const uint64_t state[STATE_SIZE], char bytes[DIGEST_SIZE]) | ||
{ | ||
std::fill(bytes, bytes+DIGEST_SIZE, 0); | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
{ | ||
for (int j = 0; j < 8; j++) | ||
{ | ||
bytes[8*i + j] = (state[i] >> (8*j)) & 0xff; | ||
} | ||
} | ||
} | ||
|
||
void OdoCrypt::PreMix(uint64_t state[STATE_SIZE]) | ||
{ | ||
uint64_t total = 0; | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
total ^= state[i]; | ||
total ^= total >> 32; | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
state[i] ^= total; | ||
} | ||
|
||
void OdoCrypt::ApplySboxes( | ||
uint64_t state[STATE_SIZE], | ||
const uint8_t sbox1[SMALL_SBOX_COUNT][1 << SMALL_SBOX_WIDTH], | ||
const uint16_t sbox2[LARGE_SBOX_COUNT][1 << LARGE_SBOX_WIDTH]) | ||
{ | ||
const static uint64_t MASK1 = (1 << SMALL_SBOX_WIDTH) - 1; | ||
const static uint64_t MASK2 = (1 << LARGE_SBOX_WIDTH) - 1; | ||
|
||
int smallSboxIndex = 0; | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
{ | ||
uint64_t next = 0; | ||
int pos = 0; | ||
int largeSboxIndex = i; | ||
for (int j = 0; j < SMALL_SBOX_COUNT / STATE_SIZE; j++) | ||
{ | ||
next |= (uint64_t)sbox1[smallSboxIndex][(state[i] >> pos) & MASK1] << pos; | ||
pos += SMALL_SBOX_WIDTH; | ||
next |= (uint64_t)sbox2[largeSboxIndex][(state[i] >> pos) & MASK2] << pos; | ||
pos += LARGE_SBOX_WIDTH; | ||
smallSboxIndex++; | ||
} | ||
state[i] = next; | ||
} | ||
} | ||
|
||
void OdoCrypt::ApplyMaskedSwaps(uint64_t state[STATE_SIZE], const uint64_t mask[STATE_SIZE/2]) | ||
{ | ||
for (int i = 0; i < STATE_SIZE/2; i++) | ||
{ | ||
uint64_t& a = state[2*i]; | ||
uint64_t& b = state[2*i+1]; | ||
// For each bit set in the mask, swap the corresponding bits in `a` and `b` | ||
uint64_t swp = mask[i] & (a ^ b); | ||
a ^= swp; | ||
b ^= swp; | ||
} | ||
} | ||
|
||
void OdoCrypt::ApplyWordShuffle(uint64_t state[STATE_SIZE], int m) | ||
{ | ||
uint64_t next[STATE_SIZE]; | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
{ | ||
next[m*i % STATE_SIZE] = state[i]; | ||
} | ||
std::copy(next, next+STATE_SIZE, state); | ||
} | ||
|
||
inline uint64_t Rot(uint64_t x, int r) | ||
{ | ||
return r == 0 ? x : (x << r) ^ (x >> (64-r)); | ||
} | ||
|
||
void OdoCrypt::ApplyPboxRotations(uint64_t state[STATE_SIZE], const int rotation[STATE_SIZE/2]) | ||
{ | ||
for (int i = 0; i < STATE_SIZE/2; i++) | ||
{ | ||
// Only rotate the even words. Rotating the odd words wouldn't actually | ||
// be useful - a transformation that rotates all the words can be | ||
// transformed into one that only rotates the even words, then rotates | ||
// the odd words once after the final iteration. | ||
state[2*i] = Rot(state[2*i], rotation[i]); | ||
} | ||
} | ||
|
||
void OdoCrypt::ApplyPbox(uint64_t state[STATE_SIZE], const Pbox& perm) | ||
{ | ||
for (int i = 0; i < PBOX_SUBROUNDS-1; i++) | ||
{ | ||
// Conditionally move bits between adjacent pairs of words | ||
ApplyMaskedSwaps(state, perm.mask[i]); | ||
// Move the words around | ||
ApplyWordShuffle(state, PBOX_M); | ||
// Rotate the bits within words | ||
ApplyPboxRotations(state, perm.rotation[i]); | ||
} | ||
ApplyMaskedSwaps(state, perm.mask[PBOX_SUBROUNDS-1]); | ||
} | ||
|
||
void OdoCrypt::ApplyInvPbox(uint64_t state[STATE_SIZE], const Pbox& perm) | ||
{ | ||
ApplyMaskedSwaps(state, perm.mask[PBOX_SUBROUNDS-1]); | ||
for (int i = PBOX_SUBROUNDS-2; i >= 0; i--) | ||
{ | ||
int invRotation[STATE_SIZE/2]; | ||
for (int j = 0; j < STATE_SIZE/2; j++) | ||
invRotation[j] = WORD_BITS - perm.rotation[i][j]; | ||
ApplyPboxRotations(state, invRotation); | ||
ApplyWordShuffle(state, INV_PBOX_M); | ||
ApplyMaskedSwaps(state, perm.mask[i]); | ||
} | ||
} | ||
|
||
void OdoCrypt::ApplyRotations(uint64_t state[STATE_SIZE], const int rotations[ROTATION_COUNT]) | ||
{ | ||
uint64_t next[STATE_SIZE]; | ||
std::rotate_copy(state, state+1, state+STATE_SIZE, next); | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
for (int j = 0; j < ROTATION_COUNT; j++) | ||
{ | ||
next[i] ^= Rot(state[i], rotations[j]); | ||
} | ||
std::copy(next, next+STATE_SIZE, state); | ||
} | ||
|
||
void OdoCrypt::ApplyRoundKey(uint64_t state[STATE_SIZE], int roundKey) | ||
{ | ||
for (int i = 0; i < STATE_SIZE; i++) | ||
state[i] ^= (roundKey >> i) & 1; | ||
} |
Oops, something went wrong.