Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Increase tests coverage #55

Merged
merged 8 commits into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
File renamed without changes.
58 changes: 58 additions & 0 deletions sharp/metrics/tests/test_fidelity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import numpy as np
from sharp.metrics import outcome_fidelity


def test_outcome_fidelity_no_target_pairs_rank_true():
contributions = np.array([[0.1, 0.2], [0.3, 0.4]])
target = np.array([0.5, 0.6])
avg_target = 0.55
target_max = 1
result = outcome_fidelity(contributions, target, avg_target, target_max, rank=True)
expected = (
1
- np.mean(np.abs(target - (avg_target - contributions.sum(axis=1))))
/ target_max
)
assert np.isclose(result, expected)


def test_outcome_fidelity_no_target_pairs_rank_false():
contributions = np.array([[0.1, 0.2], [0.3, 0.4]])
target = np.array([0.5, 0.6])
avg_target = 0.55
target_max = 1
result = outcome_fidelity(contributions, target, avg_target, target_max, rank=False)
expected = np.mean(
1 - np.abs(target - (avg_target + contributions.sum(axis=1))) / target_max
)
assert np.isclose(result, expected)


def test_outcome_fidelity_with_target_pairs_rank_true():
contributions = np.array([[0.1, 0.2], [0.3, 0.4]])
target = np.array([0.5, 0.6])
avg_target = 0.55
target_max = 1
target_pairs = np.array([0.4, 0.7])
result = outcome_fidelity(
contributions, target, avg_target, target_max, target_pairs, rank=True
)
better_than = target < target_pairs
est_better_than = contributions.sum(axis=1) > 0
expected = (better_than == est_better_than).mean()
assert np.isclose(result, expected)


def test_outcome_fidelity_with_target_pairs_rank_false():
contributions = np.array([[0.1, 0.2], [0.3, 0.4]])
target = np.array([0.5, 0.6])
avg_target = 0.55
target_max = 1
target_pairs = np.array([0.4, 0.7])
result = outcome_fidelity(
contributions, target, avg_target, target_max, target_pairs, rank=False
)
better_than = target > target_pairs
est_better_than = contributions.sum(axis=1) > 0
expected = (better_than == est_better_than).mean()
assert np.isclose(result, expected)
16 changes: 16 additions & 0 deletions sharp/utils/tests/test_parallelize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
from sharp.utils._parallelize import parallel_loop


def test_parallel_loop():
def square(x):
return x * x

iterable = range(10)

results = parallel_loop(square, iterable, n_jobs=2, progress_bar=False)
assert results == [x * x for x in iterable]

results = parallel_loop(
square, iterable, n_jobs=2, progress_bar=True, description="Test"
)
assert results == [x * x for x in iterable]
17 changes: 17 additions & 0 deletions sharp/utils/tests/test_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import pytest
from sharp.utils._utils import _optional_import


def test_optional_import_existing_module():
module = _optional_import("math")
assert module is not None


def test_optional_import_non_existing_module():
with pytest.raises(ImportError):
_optional_import("non_existing_module")


def test_optional_import_partial_module():
module = _optional_import("os.path")
assert module is not None
45 changes: 45 additions & 0 deletions sharp/visualization/tests/test_aggregate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
import pytest
import numpy as np
import pandas as pd
from sharp.visualization._aggregate import group_boxplot


@pytest.fixture
def sample_data():
X = pd.DataFrame(
{
"feature1": np.random.rand(100),
"feature2": np.random.rand(100),
"group": np.random.choice(["A", "B", "C", "D", "E"], 100),
}
)
y = np.random.rand(100)
contributions = np.random.rand(100, 2)
feature_names = ["feature1", "feature2"]
return X, y, contributions, feature_names


def test_group_boxplot_group_by_bins(sample_data):
X, y, contributions, feature_names = sample_data
ax = group_boxplot(
X, y, contributions, feature_names=feature_names, group=5, show=False
)
assert ax is not None
assert len(ax.get_xticklabels()) == 5


def test_group_boxplot_group_by_variable(sample_data):
X, y, contributions, feature_names = sample_data
ax = group_boxplot(
X, y, contributions, feature_names=feature_names, group="group", show=False
)
assert ax is not None
assert len(ax.get_xticklabels()) == len(X["group"].unique())


def test_group_boxplot_show(sample_data):
X, y, contributions, feature_names = sample_data
ax = group_boxplot(
X, y, contributions, feature_names=feature_names, group=5, show=True
)
assert ax is None
87 changes: 87 additions & 0 deletions sharp/visualization/tests/test_visualization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
import pytest
import pandas as pd
import numpy as np
from sharp.utils._utils import _optional_import
from sharp.visualization._visualization import ShaRPViz


@pytest.fixture
def mock_sharp():
"""
Fixture to create a mock ShaRP object with dummy feature names.
"""

class MockSharp:
def __init__(self):
self.feature_names_ = np.array(["Feature1", "Feature2", "Feature3"])
self.qoi="rank"
self.measure="shapley"

return MockSharp()


def test_bar(mock_sharp):
"""
Test the bar method of ShaRPViz.
"""
sharpviz = ShaRPViz(mock_sharp)
scores = [0.1, 0.5, 0.4]

plt = _optional_import("matplotlib.pyplot")
fig, ax = plt.subplots(1, 1)

result_ax = sharpviz.bar(scores, ax=ax)
assert result_ax is not None
assert result_ax.get_ylabel() == "Contribution to QoI"
assert result_ax.get_xlabel() == "Features"
assert len(result_ax.patches) == len(scores) # Number of bars matches scores


def test_waterfall(mock_sharp):
"""
Test the waterfall method of ShaRPViz.
"""
sharpviz = ShaRPViz(mock_sharp)
contributions = [0.2, -0.1, 0.3]
feature_values = ["A", "B", "C"]
mean_target_value = 1.0

result = sharpviz.waterfall(
contributions=contributions,
feature_values=feature_values,
mean_target_value=mean_target_value,
)
assert result is not None


def test_box(mock_sharp):
"""
Test the box method of ShaRPViz.
"""
sharpviz = ShaRPViz(mock_sharp)
X = pd.DataFrame(
np.random.randn(100, 3), columns=["Feature1", "Feature2", "Feature3"]
)
y = np.random.choice([0, 1], size=100)
contributions = pd.DataFrame(
np.random.randn(100, 3), columns=["Feature1", "Feature2", "Feature3"]
)

plt = _optional_import("matplotlib.pyplot")
fig, ax = plt.subplots(1, 1)

result = sharpviz.box(X, y, contributions, ax=ax)
assert result is not None


def test_bar_without_ax(mock_sharp):
"""
Test the bar method without providing an ax.
"""
sharpviz = ShaRPViz(mock_sharp)
scores = [0.3, 0.5, 0.2]

result_ax = sharpviz.bar(scores)
assert result_ax is not None
assert result_ax.get_ylabel() == "Contribution to QoI"
assert result_ax.get_xlabel() == "Features"
57 changes: 57 additions & 0 deletions sharp/visualization/tests/test_waterfall.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import pytest
import pandas as pd
import numpy as np
from sharp.visualization._waterfall import format_value, _waterfall


@pytest.mark.parametrize(
"value, format_str, expected",
[
(123.45000, "%.2f", "123.45"),
(123.00000, "%.2f", "123"),
(-123.45000, "%.2f", "\u2212123.45"),
(-123.00000, "%.2f", "\u2212123"),
(0.00000, "%.2f", "0"),
("123.45", "%.2f", "123.45"),
("-123.45", "%.2f", "\u2212123.45"),
],
)
def test_format_value(value, format_str, expected):
assert format_value(value, format_str) == expected


@pytest.fixture
def shap_values():
return {
"base_values": 0.5,
"features": np.array([1.0, 2.0, 3.0]),
"feature_names": ["feature1", "feature2", "feature3"],
"values": pd.Series([0.1, -0.2, 0.3]),
}


def test_waterfall_plot(shap_values):
fig = _waterfall(shap_values, max_display=3, show=False)
assert fig is not None
assert len(fig.axes) > 0


@pytest.mark.parametrize("max_display", [1, 2, 3])
def test_waterfall_max_display(shap_values, max_display):
fig = _waterfall(shap_values, max_display=max_display, show=False)
assert fig is not None
assert (
len(fig.axes[0].patches) == max_display * 2
) # Each feature has two patches (positive and negative)


def test_waterfall_no_features():
shap_values = {
"base_values": 0.5,
"features": None,
"feature_names": ["feature1", "feature2", "feature3"],
"values": pd.Series([0.1, -0.2, 0.3]),
}
fig = _waterfall(shap_values, max_display=3, show=False)
assert fig is not None
assert len(fig.axes) > 0
Loading