-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_baseline.py
232 lines (186 loc) · 9.1 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import time
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from model import SSD300, MultiBoxLoss
from datasets import PascalVOCDataset
from utils import *
# Data parameters
data_folder = './voc/' # folder with data files
keep_difficult = True # use objects considered difficult to detect?
# Model parameters
# Not too many here since the SSD300 has a very specific structure
n_classes = len(label_map) # number of different types of objects
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Learning parameters
checkpoint = None # path to model checkpoint, None if none
batch_size = 8 # batch size
start_epoch = 0 # start at this epoch
epochs = 40 # number of epochs to run without early-stopping
epochs_since_improvement = 0 # number of epochs since there was an improvement in the validation metric
best_loss = 100. # assume a high loss at first
workers = 4 # number of workers for loading data in the DataLoader
print_freq = 200 # print training or validation status every __ batches
lr = 1e-3 # learning rate
momentum = 0.9 # momentum
weight_decay = 5e-4 # weight decay
grad_clip = None # clip if gradients are exploding, which may happen at larger batch sizes (sometimes at 32) - you will recognize it by a sorting error in the MuliBox loss calculation
cudnn.benchmark = True
def main():
"""
Training and validation.
"""
global epochs_since_improvement, start_epoch, label_map, best_loss, epoch, checkpoint
# Initialize model or load checkpoint
if checkpoint is None:
model = SSD300(n_classes=n_classes)
# Initialize the optimizer, with twice the default learning rate for biases, as in the original Caffe repo
biases = list()
not_biases = list()
for param_name, param in model.named_parameters():
if param.requires_grad:
if param_name.endswith('.bias'):
biases.append(param)
else:
not_biases.append(param)
optimizer = torch.optim.SGD(params=[{'params': biases, 'lr': 2 * lr}, {'params': not_biases}],
lr=lr, momentum=momentum, weight_decay=weight_decay)
else:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
best_loss = checkpoint['best_loss']
print('\nLoaded checkpoint from epoch %d. Best loss so far is %.3f.\n' % (start_epoch, best_loss))
model = checkpoint['model']
optimizer = checkpoint['optimizer']
# Move to default device
model = model.to(device)
criterion = MultiBoxLoss(priors_cxcy=model.priors_cxcy).to(device)
# Custom dataloaders
train_dataset = PascalVOCDataset(data_folder,
split='train',
keep_difficult=keep_difficult)
val_dataset = PascalVOCDataset(data_folder,
split='test',
keep_difficult=keep_difficult)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True,
collate_fn=train_dataset.collate_fn, num_workers=workers,
pin_memory=True) # note that we're passing the collate function here
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True,
collate_fn=val_dataset.collate_fn, num_workers=workers,
pin_memory=True)
# Epochs
for epoch in range(start_epoch, epochs):
# Paper describes decaying the learning rate at the 80000th, 100000th, 120000th 'iteration', i.e. model update or batch
# The paper uses a batch size of 32, which means there were about 517 iterations in an epoch
# Therefore, to find the epochs to decay at, you could do,
# if epoch in {80000 // 517, 100000 // 517, 120000 // 517}:
# adjust_learning_rate(optimizer, 0.1)
# In practice, I just decayed the learning rate when loss stopped improving for long periods,
# and I would resume from the last best checkpoint with the new learning rate,
# since there's no point in resuming at the most recent and significantly worse checkpoint.
# So, when you're ready to decay the learning rate, just set checkpoint = 'BEST_checkpoint_ssd300.pth.tar' above
# and have adjust_learning_rate(optimizer, 0.1) BEFORE this 'for' loop
# One epoch's training
train(train_loader=train_loader,
model=model,
criterion=criterion,
optimizer=optimizer,
epoch=epoch)
# One epoch's validation
val_loss = validate(val_loader=val_loader,
model=model,
criterion=criterion)
# Did validation loss improve?
is_best = val_loss < best_loss
best_loss = min(val_loss, best_loss)
if not is_best:
epochs_since_improvement += 1
print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,))
else:
epochs_since_improvement = 0
# Save checkpoint
save_checkpoint(epoch, epochs_since_improvement, model, optimizer, val_loss, best_loss, is_best)
def train(train_loader, model, criterion, optimizer, epoch):
"""
One epoch's training.
:param train_loader: DataLoader for training data
:param model: model
:param criterion: MultiBox loss
:param optimizer: optimizer
:param epoch: epoch number
"""
model.train() # training mode enables dropout
batch_time = AverageMeter() # forward prop. + back prop. time
data_time = AverageMeter() # data loading time
losses = AverageMeter() # loss
start = time.time()
# Batches
for i, (images, boxes, labels, _) in enumerate(train_loader):
data_time.update(time.time() - start)
# Move to default device
images = images.to(device) # (batch_size (N), 3, 300, 300)
boxes = [b.to(device) for b in boxes]
labels = [l.to(device) for l in labels]
# Forward prop.
predicted_locs, predicted_scores = model(images) # (N, 8732, 4), (N, 8732, n_classes)
# Loss
loss = criterion(predicted_locs, predicted_scores, boxes, labels) # scalar
# Backward prop.
optimizer.zero_grad()
loss.backward()
# Clip gradients, if necessary
if grad_clip is not None:
clip_gradient(optimizer, grad_clip)
# Update model
optimizer.step()
losses.update(loss.item(), images.size(0))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses))
del predicted_locs, predicted_scores, images, boxes, labels # free some memory since their histories may be stored
def validate(val_loader, model, criterion):
"""
One epoch's validation.
:param val_loader: DataLoader for validation data
:param model: model
:param criterion: MultiBox loss
:return: average validation loss
"""
model.eval() # eval mode disables dropout
batch_time = AverageMeter()
losses = AverageMeter()
start = time.time()
# Prohibit gradient computation explicity because I had some problems with memory
with torch.no_grad():
# Batches
for i, (images, boxes, labels, difficulties) in enumerate(val_loader):
# Move to default device
images = images.to(device) # (N, 3, 300, 300)
boxes = [b.to(device) for b in boxes]
labels = [l.to(device) for l in labels]
# Forward prop.
predicted_locs, predicted_scores = model(images) # (N, 8732, 4), (N, 8732, n_classes)
# Loss
loss = criterion(predicted_locs, predicted_scores, boxes, labels)
losses.update(loss.item(), images.size(0))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % print_freq == 0:
print('[{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(i, len(val_loader),
batch_time=batch_time,
loss=losses))
print('\n * LOSS - {loss.avg:.3f}\n'.format(loss=losses))
return losses.avg
if __name__ == '__main__':
main()