- Implementaion of the Popular Vision Architectures from Scratch.
- Performance Comparison with the Pytorch Standard Architectures.
- Implementation of the Popular Vision Data Augmentation Techniques from Scratch.
- ResNet (Versions - 18, 34, 50, 101, 152) ✅
- EfficientNet (Versions - b0-b7) ✅
- EfficientNet-V2 (Versions - S, M, L) ✅
You can import the mentioned CNN Architectures from this file.
How to Use?
from cnn_architectures import ResNet18, ResNet34, ResNet50, ResNet101, ResNet152
from cnn_architectures import EffNet
from cnn_architectures import EffNetV2
# Initialize the model.
resnet = ResNet18(img_channel=3, num_classes=1000) # Resnets
version = 'b0' # b0-b7
effnet = EffNet(version, num_classes=1000) # Efficient-Nets
version = 's' # s, m, l
effnetV2 = EffNetV2(version, num_classes=1000) # EfficientNet-V2
This folder consists of the Pytorch Implementation of the Popular SOTA Vision Data Augmentations techniques.