Skip to content

Commit

Permalink
update talk
Browse files Browse the repository at this point in the history
  • Loading branch information
mhjensen committed Jun 14, 2024
1 parent 301a69e commit 0bbf04f
Show file tree
Hide file tree
Showing 11 changed files with 4,978 additions and 416 deletions.
105 changes: 93 additions & 12 deletions doc/pub/catania/html/catania-bs.html
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,28 @@
2,
None,
'the-plethora-of-machine-learning-algorithms-methods'),
('Extrapolations and model interpretability',
2,
None,
'extrapolations-and-model-interpretability'),
('Generative and discriminative models',
2,
None,
'generative-and-discriminative-models'),
('"Dilute neutron star matter from neural-network quantum states '
'by Fore et al, Physical Review Research 5, 033062 '
'(2023)":"https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062" '
'at density $\\rho=0.04$ fm$^{-3}$',
2,
None,
'dilute-neutron-star-matter-from-neural-network-quantum-states-by-fore-et-al-physical-review-research-5-033062-2023-https-journals-aps-org-prresearch-pdf-10-1103-physrevresearch-5-033062-at-density-rho-0-04-fm-3'),
('The electron gas in three dimensions with $N=14$ electrons '
'(Wigner-Seitz radius $r_s=2$ a.u.), "Gabriel Pescia, Jane Kim '
'et al. '
'arXiv.2305.07240,":"https://doi.org/10.48550/arXiv.2305.07240"',
2,
None,
'the-electron-gas-in-three-dimensions-with-n-14-electrons-wigner-seitz-radius-r-s-2-a-u-gabriel-pescia-jane-kim-et-al-arxiv-2305-07240-https-doi-org-10-48550-arxiv-2305-07240'),
('What Is Generative Modeling?',
2,
None,
Expand Down Expand Up @@ -421,6 +443,10 @@
<!-- navigation toc: --> <li><a href="#machine-learning-a-simple-perspective-on-the-interface-between-ml-and-physics" style="font-size: 80%;">Machine learning. A simple perspective on the interface between ML and Physics</a></li>
<!-- navigation toc: --> <li><a href="#ml-in-nuclear-physics-or-any-field-in-physics" style="font-size: 80%;">ML in Nuclear Physics (or any field in physics)</a></li>
<!-- navigation toc: --> <li><a href="#the-plethora-of-machine-learning-algorithms-methods" style="font-size: 80%;">The plethora of machine learning algorithms/methods</a></li>
<!-- navigation toc: --> <li><a href="#extrapolations-and-model-interpretability" style="font-size: 80%;">Extrapolations and model interpretability</a></li>
<!-- navigation toc: --> <li><a href="#generative-and-discriminative-models" style="font-size: 80%;">Generative and discriminative models</a></li>
<!-- navigation toc: --> <li><a href="#dilute-neutron-star-matter-from-neural-network-quantum-states-by-fore-et-al-physical-review-research-5-033062-2023-https-journals-aps-org-prresearch-pdf-10-1103-physrevresearch-5-033062-at-density-rho-0-04-fm-3" style="font-size: 80%;">"Dilute neutron star matter from neural-network quantum states by Fore et al, Physical Review Research 5, 033062 (2023)":"https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062" at density \( \rho=0.04 \) fm$^{-3}$</a></li>
<!-- navigation toc: --> <li><a href="#the-electron-gas-in-three-dimensions-with-n-14-electrons-wigner-seitz-radius-r-s-2-a-u-gabriel-pescia-jane-kim-et-al-arxiv-2305-07240-https-doi-org-10-48550-arxiv-2305-07240" style="font-size: 80%;">The electron gas in three dimensions with \( N=14 \) electrons (Wigner-Seitz radius \( r_s=2 \) a.u.), "Gabriel Pescia, Jane Kim et al. arXiv.2305.07240,":"https://doi.org/10.48550/arXiv.2305.07240"</a></li>
<!-- navigation toc: --> <li><a href="#what-is-generative-modeling" style="font-size: 80%;">What Is Generative Modeling?</a></li>
<!-- navigation toc: --> <li><a href="#example-of-generative-modeling-taken-from-generative-deep-learning-by-david-foster-https-www-oreilly-com-library-view-generative-deep-learning-9781098134174-ch01-html" style="font-size: 80%;">Example of generative modeling, "taken from Generative Deep Learning by David Foster":"https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/ch01.html"</a></li>
<!-- navigation toc: --> <li><a href="#generative-modeling" style="font-size: 80%;">Generative Modeling</a></li>
Expand Down Expand Up @@ -648,6 +674,71 @@ <h2 id="the-plethora-of-machine-learning-algorithms-methods" class="anchor">The
<li> Linear and logistic regression, Kernel methods, support vector machines and more</li>
<li> Reinforcement Learning; Transfer Learning and more</li>
</ol>
<!-- !split -->
<h2 id="extrapolations-and-model-interpretability" class="anchor">Extrapolations and model interpretability </h2>

<p>When you hear phrases like <b>predictions and estimations</b> and
<b>correlations and causations</b>, what do you think of?
</p>

<p>May be you think
of the difference between classifying new data points and generating
new data points.
</p>

<p>Or perhaps you consider that correlations represent some kind of symmetric statements like
if \( A \) is correlated with \( B \), then \( B \) is correlated with
\( A \). Causation on the other hand is directional, that is if \( A \) causes \( B \), \( B \) does not
necessarily cause \( A \).
</p>

<!-- !split -->
<h2 id="generative-and-discriminative-models" class="anchor">Generative and discriminative models </h2>

<div class="panel panel-default">
<div class="panel-body">
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
<ol>
<li> Balance between tractability and flexibility</li>
<li> We want to extract information about correlations, to make predictions, quantify uncertainties and express causality</li>
<li> How do we represent reliably our effective degrees of freedom?</li>
</ol>
</div>
</div>


<p>A teaser first, see next slides.</p>

<!-- !split -->
<h2 id="dilute-neutron-star-matter-from-neural-network-quantum-states-by-fore-et-al-physical-review-research-5-033062-2023-https-journals-aps-org-prresearch-pdf-10-1103-physrevresearch-5-033062-at-density-rho-0-04-fm-3" class="anchor"><a href="https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062" target="_self">Dilute neutron star matter from neural-network quantum states by Fore et al, Physical Review Research 5, 033062 (2023)</a> at density \( \rho=0.04 \) fm$^{-3}$ </h2>

<div class="panel panel-default">
<div class="panel-body">
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
<br/><br/>
<center>
<p><img src="figures/nmatter.png" width="700" align="bottom"></p>
</center>
<br/><br/>
</div>
</div>


<!-- !split -->
<h2 id="the-electron-gas-in-three-dimensions-with-n-14-electrons-wigner-seitz-radius-r-s-2-a-u-gabriel-pescia-jane-kim-et-al-arxiv-2305-07240-https-doi-org-10-48550-arxiv-2305-07240" class="anchor">The electron gas in three dimensions with \( N=14 \) electrons (Wigner-Seitz radius \( r_s=2 \) a.u.), <a href="https://doi.org/10.48550/arXiv.2305.07240" target="_self">Gabriel Pescia, Jane Kim et al. arXiv.2305.07240,</a> </h2>

<div class="panel panel-default">
<div class="panel-body">
<!-- subsequent paragraphs come in larger fonts, so start with a paragraph -->
<br/><br/>
<center>
<p><img src="figures/elgasnew.png" width="700" align="bottom"></p>
</center>
<br/><br/>
</div>
</div>


<!-- !split -->
<h2 id="what-is-generative-modeling" class="anchor">What Is Generative Modeling? </h2>

Expand Down Expand Up @@ -2650,20 +2741,10 @@ <h2 id="diffusion-learning" class="anchor">Diffusion learning </h2>
<!-- !split -->
<h2 id="mathematics-of-diffusion-models" class="anchor">Mathematics of diffusion models </h2>

<p>Let us go back our discussions of the variational autoencoders from
last week, see
<a href="https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb" target="_self"><tt>https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb</tt></a>. As
a first attempt at understanding diffusion models, we can think of
these as stacked VAEs, or better, recursive VAEs.
</p>

<p>Let us try to see why. As an intermediate step, we consider so-called
hierarchical VAEs, which can be seen as a generalization of VAEs that
include multiple hierarchies of latent spaces.
</p>

<p><b>Note</b>: Many of the derivations and figures here are inspired and borrowed from the excellent exposition of diffusion models by Calvin Luo at <a href="https://arxiv.org/abs/2208.11970" target="_self"><tt>https://arxiv.org/abs/2208.11970</tt></a>. </p>

<p>But first VAEs as an intermediate step.</p>

<!-- !split -->
<h2 id="chains-of-vaes" class="anchor">Chains of VAEs </h2>

Expand Down
77 changes: 65 additions & 12 deletions doc/pub/catania/html/catania-reveal.html
Original file line number Diff line number Diff line change
Expand Up @@ -266,6 +266,69 @@ <h2 id="the-plethora-of-machine-learning-algorithms-methods">The plethora of ma
</ol>
</section>

<section>
<h2 id="extrapolations-and-model-interpretability">Extrapolations and model interpretability </h2>

<p>When you hear phrases like <b>predictions and estimations</b> and
<b>correlations and causations</b>, what do you think of?
</p>

<p>May be you think
of the difference between classifying new data points and generating
new data points.
</p>

<p>Or perhaps you consider that correlations represent some kind of symmetric statements like
if \( A \) is correlated with \( B \), then \( B \) is correlated with
\( A \). Causation on the other hand is directional, that is if \( A \) causes \( B \), \( B \) does not
necessarily cause \( A \).
</p>
</section>

<section>
<h2 id="generative-and-discriminative-models">Generative and discriminative models </h2>

<div class="alert alert-block alert-block alert-text-normal">
<b></b>
<p>
<ol>
<p><li> Balance between tractability and flexibility</li>
<p><li> We want to extract information about correlations, to make predictions, quantify uncertainties and express causality</li>
<p><li> How do we represent reliably our effective degrees of freedom?</li>
</ol>
</div>

<p>A teaser first, see next slides.</p>
</section>

<section>
<h2 id="dilute-neutron-star-matter-from-neural-network-quantum-states-by-fore-et-al-physical-review-research-5-033062-2023-https-journals-aps-org-prresearch-pdf-10-1103-physrevresearch-5-033062-at-density-rho-0-04-fm-3"><a href="https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062" target="_blank">Dilute neutron star matter from neural-network quantum states by Fore et al, Physical Review Research 5, 033062 (2023)</a> at density \( \rho=0.04 \) fm$^{-3}$ </h2>

<div class="alert alert-block alert-block alert-text-normal">
<b></b>
<p>
<br/><br/>
<center>
<p><img src="figures/nmatter.png" width="700" align="bottom"></p>
</center>
<br/><br/>
</div>
</section>

<section>
<h2 id="the-electron-gas-in-three-dimensions-with-n-14-electrons-wigner-seitz-radius-r-s-2-a-u-gabriel-pescia-jane-kim-et-al-arxiv-2305-07240-https-doi-org-10-48550-arxiv-2305-07240">The electron gas in three dimensions with \( N=14 \) electrons (Wigner-Seitz radius \( r_s=2 \) a.u.), <a href="https://doi.org/10.48550/arXiv.2305.07240" target="_blank">Gabriel Pescia, Jane Kim et al. arXiv.2305.07240,</a> </h2>

<div class="alert alert-block alert-block alert-text-normal">
<b></b>
<p>
<br/><br/>
<center>
<p><img src="figures/elgasnew.png" width="700" align="bottom"></p>
</center>
<br/><br/>
</div>
</section>

<section>
<h2 id="what-is-generative-modeling">What Is Generative Modeling? </h2>

Expand Down Expand Up @@ -2570,19 +2633,9 @@ <h2 id="diffusion-learning">Diffusion learning </h2>
<section>
<h2 id="mathematics-of-diffusion-models">Mathematics of diffusion models </h2>

<p>Let us go back our discussions of the variational autoencoders from
last week, see
<a href="https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb" target="_blank"><tt>https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb</tt></a>. As
a first attempt at understanding diffusion models, we can think of
these as stacked VAEs, or better, recursive VAEs.
</p>

<p>Let us try to see why. As an intermediate step, we consider so-called
hierarchical VAEs, which can be seen as a generalization of VAEs that
include multiple hierarchies of latent spaces.
</p>

<p><b>Note</b>: Many of the derivations and figures here are inspired and borrowed from the excellent exposition of diffusion models by Calvin Luo at <a href="https://arxiv.org/abs/2208.11970" target="_blank"><tt>https://arxiv.org/abs/2208.11970</tt></a>. </p>

<p>But first VAEs as an intermediate step.</p>
</section>

<section>
Expand Down
98 changes: 86 additions & 12 deletions doc/pub/catania/html/catania-solarized.html
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,28 @@
2,
None,
'the-plethora-of-machine-learning-algorithms-methods'),
('Extrapolations and model interpretability',
2,
None,
'extrapolations-and-model-interpretability'),
('Generative and discriminative models',
2,
None,
'generative-and-discriminative-models'),
('"Dilute neutron star matter from neural-network quantum states '
'by Fore et al, Physical Review Research 5, 033062 '
'(2023)":"https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062" '
'at density $\\rho=0.04$ fm$^{-3}$',
2,
None,
'dilute-neutron-star-matter-from-neural-network-quantum-states-by-fore-et-al-physical-review-research-5-033062-2023-https-journals-aps-org-prresearch-pdf-10-1103-physrevresearch-5-033062-at-density-rho-0-04-fm-3'),
('The electron gas in three dimensions with $N=14$ electrons '
'(Wigner-Seitz radius $r_s=2$ a.u.), "Gabriel Pescia, Jane Kim '
'et al. '
'arXiv.2305.07240,":"https://doi.org/10.48550/arXiv.2305.07240"',
2,
None,
'the-electron-gas-in-three-dimensions-with-n-14-electrons-wigner-seitz-radius-r-s-2-a-u-gabriel-pescia-jane-kim-et-al-arxiv-2305-07240-https-doi-org-10-48550-arxiv-2305-07240'),
('What Is Generative Modeling?',
2,
None,
Expand Down Expand Up @@ -515,6 +537,68 @@ <h2 id="the-plethora-of-machine-learning-algorithms-methods">The plethora of ma
<li> Linear and logistic regression, Kernel methods, support vector machines and more</li>
<li> Reinforcement Learning; Transfer Learning and more</li>
</ol>
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="extrapolations-and-model-interpretability">Extrapolations and model interpretability </h2>

<p>When you hear phrases like <b>predictions and estimations</b> and
<b>correlations and causations</b>, what do you think of?
</p>

<p>May be you think
of the difference between classifying new data points and generating
new data points.
</p>

<p>Or perhaps you consider that correlations represent some kind of symmetric statements like
if \( A \) is correlated with \( B \), then \( B \) is correlated with
\( A \). Causation on the other hand is directional, that is if \( A \) causes \( B \), \( B \) does not
necessarily cause \( A \).
</p>

<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="generative-and-discriminative-models">Generative and discriminative models </h2>

<div class="alert alert-block alert-block alert-text-normal">
<b></b>
<p>
<ol>
<li> Balance between tractability and flexibility</li>
<li> We want to extract information about correlations, to make predictions, quantify uncertainties and express causality</li>
<li> How do we represent reliably our effective degrees of freedom?</li>
</ol>
</div>


<p>A teaser first, see next slides.</p>

<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="dilute-neutron-star-matter-from-neural-network-quantum-states-by-fore-et-al-physical-review-research-5-033062-2023-https-journals-aps-org-prresearch-pdf-10-1103-physrevresearch-5-033062-at-density-rho-0-04-fm-3"><a href="https://journals.aps.org/prresearch/pdf/10.1103/PhysRevResearch.5.033062" target="_blank">Dilute neutron star matter from neural-network quantum states by Fore et al, Physical Review Research 5, 033062 (2023)</a> at density \( \rho=0.04 \) fm$^{-3}$ </h2>

<div class="alert alert-block alert-block alert-text-normal">
<b></b>
<p>
<br/><br/>
<center>
<p><img src="figures/nmatter.png" width="700" align="bottom"></p>
</center>
<br/><br/>
</div>


<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="the-electron-gas-in-three-dimensions-with-n-14-electrons-wigner-seitz-radius-r-s-2-a-u-gabriel-pescia-jane-kim-et-al-arxiv-2305-07240-https-doi-org-10-48550-arxiv-2305-07240">The electron gas in three dimensions with \( N=14 \) electrons (Wigner-Seitz radius \( r_s=2 \) a.u.), <a href="https://doi.org/10.48550/arXiv.2305.07240" target="_blank">Gabriel Pescia, Jane Kim et al. arXiv.2305.07240,</a> </h2>

<div class="alert alert-block alert-block alert-text-normal">
<b></b>
<p>
<br/><br/>
<center>
<p><img src="figures/elgasnew.png" width="700" align="bottom"></p>
</center>
<br/><br/>
</div>


<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="what-is-generative-modeling">What Is Generative Modeling? </h2>

Expand Down Expand Up @@ -2507,20 +2591,10 @@ <h2 id="diffusion-learning">Diffusion learning </h2>
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="mathematics-of-diffusion-models">Mathematics of diffusion models </h2>

<p>Let us go back our discussions of the variational autoencoders from
last week, see
<a href="https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb" target="_blank"><tt>https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb</tt></a>. As
a first attempt at understanding diffusion models, we can think of
these as stacked VAEs, or better, recursive VAEs.
</p>

<p>Let us try to see why. As an intermediate step, we consider so-called
hierarchical VAEs, which can be seen as a generalization of VAEs that
include multiple hierarchies of latent spaces.
</p>

<p><b>Note</b>: Many of the derivations and figures here are inspired and borrowed from the excellent exposition of diffusion models by Calvin Luo at <a href="https://arxiv.org/abs/2208.11970" target="_blank"><tt>https://arxiv.org/abs/2208.11970</tt></a>. </p>

<p>But first VAEs as an intermediate step.</p>

<!-- !split --><br><br><br><br><br><br><br><br><br><br>
<h2 id="chains-of-vaes">Chains of VAEs </h2>

Expand Down
Loading

0 comments on commit 0bbf04f

Please sign in to comment.