Skip to content

Commit

Permalink
Merge pull request #1023 from CodeForPhilly/staging
Browse files Browse the repository at this point in the history
Weekly PR from Staging to Main
  • Loading branch information
nlebovits authored Nov 25, 2024
2 parents a7aa7b7 + 02c7dad commit 39af6af
Show file tree
Hide file tree
Showing 45 changed files with 2,527 additions and 1,049 deletions.
1 change: 0 additions & 1 deletion data/docker-compose.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@ services:
image: vacant-lots-proj:latest
environment:
- GOOGLE_APPLICATION_CREDENTIALS=/app/service-account-key.json
- CFP_MAPBOX_TOKEN_UPLOADER
- VACANT_LOTS_DB
- CLEAN_GREEN_GOOGLE_KEY
- PYTHONUNBUFFERED=1
Expand Down
3 changes: 0 additions & 3 deletions data/src/config/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,6 @@
USE_CRS = "EPSG:2272"
""" the standard geospatial code for Pennsylvania South (ftUS) """

MAPBOX_TOKEN = os.environ.get("CFP_MAPBOX_TOKEN_UPLOADER")
""" The location of the token for your mapbox account in your environment """

log_level: int = logging.WARN
""" overall log level for the project """

Expand Down
155 changes: 155 additions & 0 deletions data/src/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import sys

from new_etl.data_utils.access_process import access_process
from new_etl.data_utils.contig_neighbors import contig_neighbors
from new_etl.data_utils.dev_probability import dev_probability
from new_etl.data_utils.negligent_devs import negligent_devs
from new_etl.data_utils.opa_properties import opa_properties
from new_etl.data_utils.priority_level import priority_level
from new_etl.data_utils.vacant_properties import vacant_properties
from new_etl.data_utils.pwd_parcels import pwd_parcels
from new_etl.data_utils.city_owned_properties import city_owned_properties
from new_etl.data_utils.phs_properties import phs_properties
from new_etl.data_utils.li_violations import li_violations
from new_etl.data_utils.li_complaints import li_complaints
from new_etl.data_utils.rco_geoms import rco_geoms
from new_etl.data_utils.council_dists import council_dists
from new_etl.data_utils.tree_canopy import tree_canopy
from new_etl.data_utils.nbhoods import nbhoods
from new_etl.data_utils.gun_crimes import gun_crimes
from new_etl.data_utils.drug_crimes import drug_crimes
from new_etl.data_utils.delinquencies import delinquencies
from new_etl.data_utils.unsafe_buildings import unsafe_buildings
from new_etl.data_utils.imm_dang_buildings import imm_dang_buildings
from new_etl.data_utils.tactical_urbanism import tactical_urbanism
from new_etl.data_utils.conservatorship import conservatorship
from new_etl.data_utils.owner_type import owner_type
from new_etl.data_utils.community_gardens import community_gardens
from new_etl.data_utils.park_priority import park_priority
from new_etl.data_utils.ppr_properties import ppr_properties

import pandas as pd


# Ensure the directory containing awkde is in the Python path
awkde_path = "/usr/src/app"
if awkde_path not in sys.path:
sys.path.append(awkde_path)

services = [
# vacant designation
vacant_properties, # needs to run early so that other utils can make use of the `vacant` designation
# geometries/areas
pwd_parcels,
council_dists,
nbhoods,
rco_geoms,
# ownership
city_owned_properties,
phs_properties,
community_gardens,
ppr_properties,
owner_type,
# quality of life
li_violations,
li_complaints,
tree_canopy,
gun_crimes,
drug_crimes,
delinquencies,
unsafe_buildings,
imm_dang_buildings,
# development
contig_neighbors,
dev_probability,
negligent_devs,
# access/interventions
tactical_urbanism,
conservatorship,
park_priority,
]

dataset = opa_properties()

print("Initial Dataset:")
print("Shape:", dataset.gdf.shape)
print("Head:\n", dataset.gdf.head())
print("NA Counts:\n", dataset.gdf.isna().sum())

for service in services:
dataset = service(dataset)
print(f"After {service.__name__}:")
print("Dataset type:", type(dataset.gdf).__name__)
print("Shape:", dataset.gdf.shape)
print("Head:\n", dataset.gdf.head())
print("NA Counts:\n", dataset.gdf.isna().sum())

before_drop = dataset.gdf.shape[0]
dataset.gdf = dataset.gdf.drop_duplicates(subset="opa_id")
after_drop = dataset.gdf.shape[0]
print(
f"Duplicate dataset rows dropped after initial services: {before_drop - after_drop}"
)

# Add Priority Level
dataset = priority_level(dataset)

# Print the distribution of "priority_level"
distribution = dataset.gdf["priority_level"].value_counts()
print("Distribution of priority level:")
print(distribution)

# Add Access Process
dataset = access_process(dataset)

# Print the distribution of "access_process"
distribution = dataset.gdf["access_process"].value_counts()
print("Distribution of access process:")
print(distribution)

before_drop = dataset.gdf.shape[0]
dataset.gdf = dataset.gdf.drop_duplicates(subset="opa_id")
after_drop = dataset.gdf.shape[0]
print(f"Duplicate final dataset rows droppeds: {before_drop - after_drop}")

# Convert problematic columns to numeric
numeric_columns = [
"market_value",
"sale_price",
"total_assessment",
"total_due",
"num_years_owed",
"permit_count",
]
for col in numeric_columns:
dataset.gdf[col] = pd.to_numeric(dataset.gdf[col], errors="coerce")

dataset.gdf["most_recent_year_owed"] = dataset.gdf["most_recent_year_owed"].astype(str)

print("Column data types before exporting to Parquet:")
print(dataset.gdf.dtypes)

# Quick dataset profiling
print("\nQuick dataset profile:")

# 1) Number of NA values per column
print("\nNumber of NA values per column:")
print(dataset.gdf.isna().sum())

# 2) Mean, median, and std of numeric columns
print("\nMean, Median, and Standard Deviation of numeric columns:")
numeric_columns = dataset.gdf.select_dtypes(include=["float", "int"]).columns

for column in numeric_columns:
mean = dataset.gdf[column].mean()
median = dataset.gdf[column].median()
std = dataset.gdf[column].std()
print(f"{column}:\n Mean: {mean:.2f}\n Median: {median:.2f}\n Std: {std:.2f}")

# 3) Number of unique values in string columns
print("\nNumber of unique values in string columns:")
string_columns = dataset.gdf.select_dtypes(include=["object", "string"]).columns
unique_values = dataset.gdf[string_columns].nunique()
print(unique_values)

dataset.gdf.to_parquet("tmp/test_output.parquet")
Empty file added data/src/new_etl/__init__.py
Empty file.
Empty file.
Loading

0 comments on commit 39af6af

Please sign in to comment.